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Abstract

If W: R" — [0, o] is Borel measurable, define fer-finite positive Borel measures
w, v onR" the bilinear integral expression

L(W: 2, ) 1= f / WX — ) du(x) du(y) .
Rn Rn

We give conditions oW such that there is a consta@t> 0, independent oft andv,
with

L(W; 1, 1) < Cy/T(W; g, i) 1 (W v, 0)

Our results apply to a much larger class of functigvshan known before.

1. Introduction and Results

Given a Borel functionV: R" — [0, o], for o-finite positive measureg, v on R" define
the integral

LW 1) 1= / WX — y) dpe(0) du(y) -
Rn Rn

Denote forC > 0 by W(n, C) the class of Borel function#/: R" — [0, oc] such that for all
o -finite positive measures, v onR"

(1.1) L(W: i, v) < CYHW: g, i) (Wi v, v)

holds. Moreover, denote
W) = U Wn,C) .
C>0



If W is an even function and the symmetric bilinear forgW; -, -) is positive semidefinite,
thenW € W(n, 1) (Cauchy-Schwarz’ inequality). Hence we may regard (1.1) as a generalized
form of the Cauchy-Schwarz inequality.

An even functionW such thatl (W; -, -) is positive semidefinite is callgubsitive definite

Roughly speaking, positive definiteness of a function corresponds to non negativity of its
Fourier transform [5, 6]. The only result regarding (1.1) the author is aware of that goes
beyond positive definite functions is given by Mattner [4, Sect. 5.1]:|Ifis any norm orR",
h: [0, c0) — [0, co] is decreasing, antlV is given byW(x) := h(||x])), thenW € W(n).
Theorem 1.5 below recovers this statement and extends it by alldwimdpe non monotone.
Theorem 1.2, the main result of the present paper, yields a criterion for memberdhim)n
for functionsW that can not be written &so p with a seminormp onRR".

The study of property (1.1) is motivated by the partial differential equation

(1.2) —AU+Vu=W=u?>u ueHR".

Herex denotes convolutiorly in L°°(R") is periodic, and 0 lies in a gap of the spectrum of
(—A 4+ V), cf. [1]. One is interested in the existence of nontrivial solutions to (1.2). For the
special case = 3 andW(x) = 1/||x||2 the problem was settled in [2] by using the fact that
this particular functioiV is positive definite. In [1] it is shown th&/ € W(n) (together with
appropriate growth conditions) is sufficient to obtain a nontrivial solution of (1.2).

1.1. Main Results

The statement of our Theorems requires to introduce some notation and definitions. For a
topological spaceX denote byP(X) the set of Borel functions : X — [0, 00]. Forn

in N denote byC(n) the class of subsets &" that are closed, convex, and symmetric (i.e.
—A = A). The dimension dinA of a convex subsef of R" is the dimension of the affine

hull of A.

Definition 1.1. For X, AC R", X # &, put
k(X, A) :=inf{m e N | X can be covered by translates oA }
and
a(X) =infffmeN|3IAcCn): dmA=n, AC Xand«(X, A)=m}.
For X = @ setk (@, A) := 0 anda (@) := 0.
Given a setX, a mapW: X — R andt in R denote
[Wlt :={x e X|W(x) >t}.
Furthermore, define the claggn) by

A) = {W e PR"

lim supa ([W]t) + lim supa ([W];) < oo} :
t—0 t—o0

Our main result then reads:



Theorem 1.2. For every n inN the inclusionconu(A(n)) € W(n) holds.

Remark 1.3. It will be shown in the proof of Theorem 1.2 thav(n) is a convex cone.
Obviously, A(n) is a cone. The Example 1.6 given below demonstrates.iaj is not
convex.

The present author does not know whether a function/im) that is sufficiently regular,
say continuous, must necessarily belong to ¢gtin)).

A simpler criterion for membership i/ (n) can be formulated in the case of the compo-
sition of a map with a seminorm. To state it we introduce further concepts and notation.

Definition 1.4. For a subseY of [0, co) putA(Y) :=supt > 0]|[0,t] €Y }and

0 Y=0
BY) = {00 A(Y) = —oco andY # @
supY)/A(Y) otherwise.

Here we seto/a := oo if a > 0 andoo/oco := 1.

We introduce

B = { h € P(]0, 00))

im sups [hlo) -+ im supg [hlo) < oo } |
t—0 —00

Our second result then reads:

Theorem 1.5. Suppose that ke P([0, c0)) and that p is a seminorm dR". If h € B then
hope A(n). Ifho p € A(n) andcodimkerp) > 2then he B.

We provide some examples to illustrate the concepts introduced so far:

Example 1.6. Denote byh the characteristic function of [@], taken as a map from [@o)
into [0, oc]. Thenh e B. Fori = 1, 2 defineW, as a map iP(R?) by Wi (x1, X2) := h(|x ).
Theorem 1.5 implies that; € A(2) fori = 1, 2, but clearlyW := Wy + W, ¢ A(2). Since
A(2) is a cone this implies thad (2) is not convex. Neverthelesd/ € W (2) by Theorem 1.2
and sincé/V(2) is a convex cone.

Example 1.7.We construct a functiow in A(n) that is not even, and hence is neither positive
definite nor of the fornho p with hin P([0, oo)) andp a seminorm oiR". PickXg in R"\ {0}
and set

Wo(X) = 1
ST X
W(X) := Wo(X) + Wo(X — Xo) .
Denoting byD(r, x) the closed ball of radius > 0 with centerx, it follows easily that
D(1/t,0) < [W]: € D(2/t,0) U D(2/t, Xo)

forallt > 0. This implies thaWW € A(n).



Example 1.8.We show that the assumption on codk®ar p) used in Theorem 1.5 is not purely
technical. Ifp is a seminorm ofR" with codim(ker p) = 0 then triviallyh o p € A(n) for
arbitraryh in P([0, o0)). Given the seminornp(x) := |X| in R with codim(kerp) = 1, we
constructh in P([0, oo)) such thaW :=ho p € A(1) buth ¢ B. Put

o0 s=0
h(s) := { exp(—(k — 1)) s = exp(k?) for somek in N
1/s otherwise.

Fort > 1 we obtain h]; = [0, 1/t], and for 0< t < 1 we obtain

(1.3) hlt = [0, 1/t] U {exp<(1+ [\/Tgt Dz)} .

Recall that §] denotes the largest integer less than or equalit@ € R. From (1.3) itis clear
thata([W];) < 3forallt > 0, soW e A(1). On the other hand, fdg := exp(—k?) we find

B([h]) = exp((1 + k)?) exp(—k?) = exp(1 + 2k)

and therefore lim syp, , B([h]t) = co. Henceh ¢ B.

1.2. General Notation

In R" denote byj-||p for pin [1, o] the standardP(n)-norm. In the case op = 2 we write
x - y for the standard Euclidean scalar product of elemgntsin R". If V is a subspace of
R", denote byV - the orthogonal subspace with respect to the standard scalar product.
The power set of a sé¢ will be written 2X. The cardinality ofX is denoted byX|. Some
operators used are: coAvfor the convex hull ofA, cl A, int A, ando A for closure, interior,
and boundary of a subsgétof a topological space.
A parallelotope is a rectangular parallelepiped.

2. Some Convex Geometry

The next Lemma allows us to deal with unbounded sef§im) in a convenient manner.

Lemma 2.1. If A € C(n) then there is a unique subspace VR5fsuch that B:.= ANV+ e
C(n) iscompactand A=B + V.

Proof. First we remark: If a sefA in C(n) includes a ray (a s€ix + ty | t > 0} for some
X,y in R"), then it includes the 1-dimensional subspace parallel to that ra4.iftludes a
translate of a subspagéof R" then A includesV.

Now fix A in C(n). From [3, Lemma 2.5.4] we obtain a unique subspscef R" of
maximal dimension such that a translate\bfand thusV is included inA. Moreover, by
that lemma it also holds th& := AN V< e C(n) does not include a line (the translate of
a l-dimensional subspace) aAd= B + V. If B was not bounded then it included a ray



by [3, Lemma 2.5.1]. Sinc® is symmetric it therefore included a line also. Contradiction.
SinceA is closedB must therefore be compact.

If, on the other hand, for some subspatef R", B = ANV is compact and\ = B+V,
thenV is included inA. If Aincludes a translate of another subsp¥#¢eand thus includes
W, thenW C V. HenceV has maximal dimension among the subspaces includéd amd
it is unique, again by Lemma 2.5ldc.cit. O

Definition 2.2. We call the pairB, V) given for Ain C(n) by Lemma 2.1 thesplitting of A
Definition 2.3. Denote forX < R" by

cesX i= cl(conv3(X — X)) € C(n)
the closed convex hull of the symmetrizationXf

Remark 2.4. For A, B € R" we have congA + B) = convA + convB. Thus
ccsX = cl 3(convX — convX) .

From this also follows that c¢X + Y) = ccsX + ccsY if one of X andY is relative compact.
Moreover, cCA = Aif A e C(n).

Definition 2.5. If X € R" and(A, V) is the splitting of ccX, puty (X) :=dimV.

Lemma 2.6. The mapy : R {0, 1, 2,...,n}is monotone increasing with respect to the
partial order induced or2R" by inclusion. If X< Y € R" and y(X) = y(Y), then from
A € C(n) withdim A = n andx (X, A) < oo it follows thatx (Y, A) < oco.

Proof. Monotonicity of y is obvious. FixX C Y with y(X) = y(Y), and suppose we are
given A in C(n) with dimA = n and« (X, A) < oco. Let (B, V) be the splitting ofA and
let Z € R" be finite withX € 7+ A =7 + B + V. SinceZ + B is compact, in view of
Remark 2.4 we obtain

(2.1) ccsX €cceSZ+B+V)=ccSZ+B)+ V.

Since ccX C ccsY andy (X) = y(Y) there is a subspad®/ of R" with dimW = y(X)
and there are splittingB;, W) and (B, W) of ccsX and ccsy respectively, withB; € Bs.
Put A; := AN WL, Now (2.1) implieswW <€ V, and henceA; + W = A. Therefore
dim A = nyields dimA; = dimW-+ = n — y(X), and relintA; (the interior of A; relative
to the smallest subspace includifg) is open inW-. SinceB, € W+ is compact there is a
finite set7 < W= with B, € 7 + As. It follows that

YCcesY =B, +WCSCIT+AA+W=J+A
and thusc(Y, A) < oo. O

Lemma 2.7. For all n in N there is a constant Gn) > 0 such that for all A inC(n) with
dim A = n the following hold:



a) k(A, 3A) < Cy(n)

b) there is a discrete subgroup G of the additive groufR6fsuch thatR" = G + A and
SUBern|(X + 3A) N G| < C1(Nn).

Proof. From [7, Lemma 2.4] we obtain for ath in N a constan€,(m), monotone increasing
in m, such that for every m-dimensional comp#&cin C(m) there is a parallelotope € R™,
centered at the origin, with

(2.2) P C B CCymP.

Now set
C1(n) :=[3Ca(n) + 1]n

where p] denotes the largest integer below or equa iba € R.

Fix Ain C(n) and let(B, V) be the splitting ofA. Since dimA = n we have dinB +
dimV = n. We may assume difd = mandV = {0} x R""™ as a subspace &". We
identify R™ with R™ x {0} € R" so thatB € R™, and we choose a parallelotopecC R™ for
B asin (2.2). Then from@;(m) < 3Co(n) and the definition o€1(n) we obtain

k(A 3A) = k(B, 3B) < k(C2(mP, 3P) < k(3C2(MP, P) < C1(n) .
For the second assertion we use ofrom above the representation

with somery, ro, ..., rm > 0 and putGo = 2r1Z x 2rZ x --- x 2rmZ € RM. ThenGg is
an additive subgroup &™ with Gg+ B 2 Gg+ P = R™. Now setG := Gg x {0} € R".
ThenG + A= G + B+ V = R". On the other hand we have for everyn R"

X+3ANG=X+3B)NG C (x+3C(mP)NG < (x+3C(mP)NG

and hence
(X+3A) NG| < |(X+3Co(nP)NG| <Cy(n).

This completes the proof. O

Lemma 2.8. Suppose that p is a seminorm BA and that Y C [0, o). Put X := p~1(Y).
Thena(X) < C3(n)B(Y)" for some constant £n). If codimkerp) > 2, thena(X) >
B(Y)/2.
Proof. Forr > O putA(r) := {x € R" | p(x) <r} € C(n). Let(B(1), V) be the splitting
of A(1) and putB(r) :=rB(1) forr > 0. Then(B(r), V) is the splitting ofA(r). Moreover,
V = kerp. Setm := codimV, so dimB(1) = m.

Define f,g: [0,00) — N by setting f(0) := g(0) := 1 and, fort > 0, f(t) =
k(0A(t), A(D) = k(dB(t), B(1)) andg(t) := «(At), A1) = «(B(t), B(1)). Then f
andg are monotone increasind, < g, and

kK(QAr), As) = f(r/s)
K(A(r), A(s)) = g(r/s)



forr,s > 0. As in the beginning of the proof of Lemma 2.7 we obtain

(2.3) g(t) =k (B(t), B(1) < «k(tC2(m)P, P) = [tCa(m) + 1]™.
HereP C B(1) is a parallelotope chosen as for (2.2)mf> 2 then
(2.4) f(t) =«x@B(), B(1) >t.

This can be seen as follows: Consid&l) as a subset dR™. Fix Xg in dB(1) such that
2|Ixoll2 = diamB(1). Let Q be the orthogonal projection ™ onto spafixg} andL := ker Q.
Then dimL > 1. It follows that for every in [—tXg, tXp] (the segment joining-txp andtXxp)
the set(x + L) N dB(t) is not empty. Moreover, fronB(1) € C(n) it follows thatxg + L is a
supporting hyperplane fd8(1). If x1, Xo, ..., Xk € R™M are such that

k
aB(t) < | Jxi + B) .

=1
from the above it is clear that then

k
[—txo. txo] < [ J(Qx + B(1)

=1
and therefor& > [t + 1] > t. This yields (2.4).
Let us consider the case<OA(Y) < supY < oco. Thereis

e € [0, A(Y)/2]
such that [QA(Y) —¢] C Y. It follows that
AL(Y) —¢e) € X C A(supyY) .
Thus, using (2.3), we obtain

supY

a(X) < k(ABUPY), AGY) — ) = g(MY)——s

) < 9(2B(Y)) < C3(mB(Y)"
for some constar€z(n) > 1.

There is¢ in [0, supY/2] such that suly — ¢ € Y and therefore
(2.5) dA(suUpY —e) C X.

Every Ain C(n) with A C X is path connected, and satisfieg€ 0A. Sincep is continuous,
p(A) is included in the path component ¥fcontaining 0. Therefor@(A) C [0, A(Y)] and
A C A(A(Y)). This shows that

kK(X, A) = k (X, A(L(Y)))
for all Ain C(n). Hence we find fom > 2, applying (2.4) and (2.5):

a(X) = k(ASUPY — &), AG(Y))) = T (S“EZ(—Y)_S) > £(B(Y)/2) = B(Y)/2.
The case.(Y) > 0, sugY) = oo is handled similarly, and in all other cases the assertion
is trivial. O



3. Proof of the Theorems

Let us first prove Theorem 1.5. Suppose that we are divenP ([0, co0)) and a seminorm
ponR". SetW := ho p. Then W]y = p~([h];) for everyt > 0. Now Lemma 2.8
yieldsa([W]y) < CB([h]t)™ with some positive constait. Moreover, if codintker p) > 2
Lemma 2.8 implies thag ([h];) < 2« ([W];). From these facts the theorem follows.

The proof of Theorem 1.2, taken up next, is divided into the following steps:

(i) W(n, C) is closed under increasing pointwise limits for evéry- 0.
@i) W(n, C) is a convex cone for evel@ > 0.
Now suppose thaty € P(R").

(@ii) If A'in C(n) has dimensiom, if «k(suppW, A) < oo, if there isa > 0 such that
W > aon 2A, and if W is bounded withb := supW(R"), thenW € W(n, C) for
C := C1(n)3k (suppW, A)b/a, whereCy(n) is the constant given in Lemma 2.7.

(iv) If suppa([W]t) < oo thenW € W(n, C) for someC > 0.
(v) Iflimsup;_ g ([W]p)+limsup_, ., «([W];) < cothenW € W(n, C) for someC > 0.

Theorem 1.2 is then a consequence of (ii) and (v).

Statements (i) and (ii) were proven in [4, Sect. 5.1]. For completeness we repeat the
argument here. Suppose tiat> 0. Fix two o -finite positive Borel measurgs, v onR". If
W is the pointwise limit of an increasing sequence of functiong/in, C), then (1.1) follows
from Lebesgue’s Monotone Convergence Theorem. This proves (i) gincevere chosen
arbitrarily.

Consider the implication

(3.1) (u <Cyww and x < C\/y_z) = U+ x)2 < C%w+y)(w+2)

foru, v, w, X, y, zin [0, 00), which is a consequence ofdwyz < vz + yw. If W, W, €
W(n, C) then (3.1) implies tha¥V; + W> € W(n, C). SinceWW(n, C) is a cone)V(n, C) is
convex.

To show (iii) choose a discrete additive subgrdaipf R" for A as in Lemma 2.7b). Lef
be a finite subset &" with suppW € 7+ Aand|Z| = «(suppW, A). Put7 := (Z+3A)NG.
From the choice 06 it follows that

(3.2) T < Ca(M|Z] .

DefineW: R" x R" — R by W(x, y) := W(x — y). ThenW is a Borel function. We claim
that
SuppW < U U+ A x v+ A .

u,veCG
u—veJ



To see this, suppose thét, y) € suppW, or equivalentlyx — y € suppW. There isw in 7
such thatx — y € w + A, and there ar@, v in G such thatx e u+ Aandy € v+ A. It
follows thatu —v e x —y+2A C w+3A C Z + 3A. Alsou — v € G becauses is a
subgroup. This proves the claim.

Now Cauchy-Schwarz’ inequality for sums yields

(3.3) I(W;M,v)=/ Wdu xv)<b ~d(n x v)
RMx RN suppW

1
2
<b ) uU+Ave+A) < b( NTCEX S v(v+A)2>
u,veG u,veG u,veG
u—veJ u—veJ u—veJ

We need to estimate the sums in the last term. For exenyR", from A € C(n) it follows
that the statementi(e G andx € u + A) is equivalent to the statememte (x + A) N G. By
the choice ofG this leads to

Hue G| Xxeu+ A} =|X+A NG| <|(Xx+3A) NG| <Ci(n)
and thus for alk, y in R"
(3.4) fue G| (X y)eU+A) xU+AI <Cin?.
Also we have

(3.5) Ju+A xu+A) c{xy eR"xR"|[x—ye2A}=:D
ueG

andW > a on D. Using (3.2), (3.4) and (3.5) we calculate

> nus A2 =171 w2 =171 Y [ At x )

u,veG ueG ueG ? U+A X (U+A)
u—veJ
C1(n)3|Z| —
<27 [ dwxw = 2OE [ Wagexp
D a RN xRN
_ Cun)¥7]

(W w, p),

a similar estimate holding for the sum ovew + A)2. This proves (iii) in view of (3.3).
To show (iv) suppose tha¥l := sup.ga([W]t) < co. ForminNand 1< i < m2"
defineWm,; andWpy, in P(R") by setting

1

Wn,i i= 2_mX[W]i/2m
m2m
i=1



Herey , denotes folA € R" the characteristic function &&. The sequenc@My) is increasing
and converges pointwise . Fix m andi. There isAin C(n) such that dimA = n, A C
[W]i /2m, andk ([W]i om, A) < M. SinceA is closed supfVmi = cl[W]; ,om can be covered
by the same number of translates Afas W] om, i.e. k (SUPPWi , A) = k([W]i/om, A).
Using Lemma 2.7 we thus obtain

K (SUPPWini , 3A) < Ca(Mk (SUPPWi , A) < C1(MM .

Moreover,Wni = 1/2™ on A andWni < 1/2™ on R". By (iii) Wi € W(n,C) for
C = C1(n)*M, independently ofm andi. By (ii) Wm € W(n, C) for everym, and thus (i)
yields the desired result.

The remaining case (v) is handled as follows: We can assuméihgt O, otherwise
there is nothing to do. By our assumptions there lre= 0 and 0 < t; < tg such that
a([W]t) < M fort in (0, t1] U [tg, c0) and W]y # @ for t in (0, t1]. Considery ([W];) as
a function oft sending(0, o0) into {0, 1, 2,...,n} (v is given in Definition 2.5). We can
choose O< t3 < tp < t1 with y ([W],) = ¥ ([W],). Forx in R" put Wi (x) := min{tz, W(x)}
andWa(X) := min{ty — t3, W(X) — Wy(X)}. Also putWs := W — W; — W,. ThenW; < t3,
W, < tg — t3, andW, > O fori = 1, 2, 3. Moreover, we have

(Wi, = [W1t O<t<ts
Yo ty <t

(W], = [Wlt+t, O<t<to—t3
T le tg—t3 <t

[Wa]t = [W]t4t -

From (iv) it follows thatWi, W3 € W(n, C) for someC > 0. Since W], # @ and
a([W]t,) < oo there isAin C(n) with dimA = n, A € [W];, and«([W]t,, A) < ooc.

By Lemma 2.6 alsa ([W]t;, A) < oo, and by Lemma 2.7&) ([W],, %A) < 00. Hence the
closedness oA and suppV> € cl[W]t, imply that « (suppWo, %A) < o0o. Also we have
W, >t — tzon A andW, < tg — tz3 onR". Now (iii) implies thatW, € W(n, C) for some
C, and by (ii) the same holds faW = W; + W> + Ws. This finishes the proof of (v).
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