
Uniform Continuity and
Brézis-Lieb Type Splitting for

Superposition Operators in
Sobolev Space

Nils Ackermann∗
Instituto de Matemáticas

Universidad Nacional Autónoma de México
Circuito Exterior, C.U., 04510 México D.F., México

Using concentration-compactness arguments we prove a vari-
ant of the Brézis-Lieb-Lemma under weaker assumptions on the
nonlinearity than known before. An intermediate result on the
uniform continuity of superposition operators in Sobolev space
is of independent interest.

1 Introduction
In their seminal paper [6] Brézis and Lieb prove a result about the decou-
pling of certain integral expressions, which has been used extensively in
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the calculus of variations. Using concentration compactness arguments in
the spirit of Lions [14–16] we prove a variant of this lemma under weaker
assumptions on the nonlinearity than known before. To describe a special
case of the Brézis-Lieb lemma, suppose that Ω is an unbounded domain in
RN , p > 1, f(t) := |t|p for t ∈ R, and (un) a bounded sequence in Lp(Ω)
that converges pointwise almost everywhere to some function u. If one de-
notes by F : Lp(Ω) → L1(Ω) the superposition operator induced by f , i.e.,
F(v)(x) := f(v(x)), then the result in [6] implies that u ∈ Lp(Ω) and

F(un)−F(un − u)→ F(u) in L1(Ω), as n→∞. (1.1)

The same conclusion is obtained in that paper for more general functions,
imposing conditions that are satisfied for continuous convex f with f(0) = 0,
and imposing additional conditions on the sequence (un).
A different approach to the decoupling of superposition operators along

sequences of functions rests on certain regularity assumptions on f . For
example, assume that f ∈ C1(R) satisfies

sup
t∈R

|f ′(t)|
|t|p−1 <∞. (1.2)

Then the proof of [19, Lemma 8.1] can easily be extended to obtain (1.1).
See also the slightly more general [7, Lemma 1.3], where f is allowed to
depend on x explicitly.
Our aim is to give a decoupling result under a different set of hypotheses

that applies to a much larger class of functions f than considered above,
within a certain range of exponents p. In particular, we do not impose
any convexity type assumptions on f as was done in [6], nor any regularity
assumptions as in [7,19] apart from continuity. The price we pay for relaxing
the hypotheses on f is that we need to restrict the range of allowed growth
exponents p in comparison with [6], that we need to assume some type of
translation invariance for Ω, and that the decoupling result only applies
to a smaller set of admissible sequences, namely sequences that converge
weakly in H1(Ω). Nevertheless, the numerous applications in the Calculus
of Variations for PDEs where these extra assumptions are satisfied justify
the new set of hypotheses.
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To keep the presentation simple and highlight the main idea, we only
treat the case Ω = RN . From here on, function spaces are taken over RN

unless otherwise noted. It would be possible to consider other domains
or superposition operators between other spaces, and we plan to do so in
forthcoming work. Nevertheless, we do allow a periodic dependency of f on
the space variable.
To explain our results we formalize the notion of decoupling:

Definition 1.1. Suppose that X and Y are Banach spaces. Consider a
map F : X → Y , a sequence (un) ⊆ X and u ∈ X. We say that F BL-splits
along (un) with respect to u (BL being an abbreviation for Brézis-Lieb) if

‖F(un)−F(un − u)−F(u)‖Y → 0.

We say that F almost BL-splits along (un) with respect to u if, starting with
any subsequence of (un), we can pass to a subsequence such that there is a
sequence (vn) ⊆ X such that ‖vn − u‖X → 0 and

‖F(un)−F(un − vn)−F(u)‖Y → 0.

If u is a limit of (un) in some unambiguous sense then we frequently omit
to mention that (almost) BL-splitting is with respect to u.

By [6], the map f(u) = |u|p induces a map F : Lp → L1 that BL-splits
along pointwise a.e. converging bounded sequences in Lp with respect to
their pointwise a.e. limits. On the other hand, the technique used to prove
[1, Lemma 3.2] (and the related results in [10, 11]) yields the following: if
f ∈ C(R) satisfies

sup
t∈R

|f(t)|
|t|p

<∞ (1.3)

then the induced superposition operator F : Lp → L1 almost BL-splits along
any Lploc-converging bounded sequence in Lp with respect to its limit in Lploc,
see Theorem 2.1(a) below. This result is basically Lions’ approach, with
a simplifying twist. If in addition F is uniformly continuous on bounded
subsets of Lp then it is easy to see that it BL-splits along any Lploc-converging
bounded sequence in Lp with respect to its limit in Lploc, see [2, Lemma 6.3].
For example, this holds true if (1.2) is satisfied.
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We illustrate the distinction between BL-splitting and almost BL-splitting
by the following examples:

Example 1.2. If p > 1 and if either f(t) := cos(πt)|t|p or f(t) :=
cos(π/t)|t|p then there is a bounded sequence (un) in Lp that converges
in Lploc and pointwise a.e. to a function u such that the induced continuous
superposition operator F := Lp → L1 does not BL-split along any subse-
quence of (un) with respect to u. On the other hand, F almost BL-splits
along any Lploc-converging bounded sequence in Lp with respect to its limit
in Lploc. Hence F is not uniformly continuous on bounded subsets of Lp
and neither the general conditions used in [6] nor (1.2) are satisfied for f in
these examples.

The sequences mentioned in the example are provided in Section 4 below.
Our main interest is to avoid condition (1.2), or any other conditions

on f that ensure uniform continuity on bounded subsets of Lp (e.g., a local
Hölder condition, together with an appropriate growth bound on the Hölder
constants on bounded intervals). Our result below states that it is sufficient
to restrict to bounded subsets of H1 instead.
In this context we now formulate our main theorem, in a slightly more

general setting than what we considered above. A function f : RN ×R→ R
is a Caratheodory function if f is measurable and if f(x, ·) is continuous
for almost every x ∈ RN . The induced superposition operator on functions
u : RN → R is then given by F(u)(x) := f(x, u(x)). If A is a real invertible
N ×N -matrix then f is said to be A-periodic in its first argument if f(x+
Ak, t) = f(x, t) for all x ∈ RN , k ∈ ZN , and t ∈ R.
Denote by 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ if N = 1 or N = 2

the critical Sobolev exponent for H1. Recall the continuous and compact
embedding of the Sobolev space H1(U) in Lp(U) for p ∈ [2, 2∗) if U ⊆ RN

is a bounded domain.

Theorem 1.3. Consider µ > 0, ν ≥ 1, and C0 > 0, such that p := µν ∈
(2, 2∗). Suppose that f : RN × R → R is a Caratheodory function that
satisfies

|f(x, t)| ≤ C0|t|µ for all x ∈ RN , t ∈ R, (1.4)
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and which is A-periodic in its first argument, for some invertible matrix
A ∈ RN×N . Denote by F : Lp → Lν the continuous superposition operator
induced by f . Then F is uniformly continuous on bounded subsets of H1

with respect to the Lp-Lν-norms and hence also with respect to the H1-Lν-
norms. Moreover, F : H1 → Lν BL-splits along weakly convergent sequences
in H1 with respect to their weak limit.

Our proof of Theorem 1.3 has similarities with the proof of [18, The-
orem 3.1] but involves an intermediate cut-off step in the proof of Theo-
rem 2.1. Essentially, we first prove almost BL-splitting of F along weakly
converging sequences in H1 with respect to their weak limit, using the
concentration function and the compactness of the Sobolev embedding
H1(U) ↪→ Lp(U), for p ∈ [2, 2∗) and for a bounded domain U . Then we
collect the possible mass loss at infinity along subsequences with the help
of Lions’ Vanishing Lemma, employing the assumption p > 2.

Remark 1.4. Theorem 1.3 applies in particular to the functions considered
in Example 1.2 when ν = 1 and µ = p ∈ (2, 2∗). On the other hand, for
f(t) := cos(π/t)t2 there is a sequence in H1 that converges weakly but that
possesses no subsequence along which f : H1 → L1 BL-splits with respect
to the weak limit. The same is true for f(t) := cos(πt)t2∗ . In this sense,
Theorem 1.3 is optimal, that is, it cannot be extended in this generality to
include the cases p = µν = 2 and p = µν = 2∗. The existence of these
counterexamples is proved in Section 4.
Of course, by Sobolev’s embedding theorem, a map Lp → Lν that BL-

splits along Lploc-converging bounded sequences in Lp with respect to their
limits in Lploc also BL-splits in H1 along weakly convergent sequences with
respect to their weak limits. Therefore Theorem 2.1(a), together with (1.2)
(or the weaker Hölder condition with growth bound), yields BL-splitting
maps along weakly convergent sequences in H1 with respect to weak limits
even for p = 2 and p = 2∗.

Remark 1.5. The result also holds true in a slightly restricted sense for
functions f that are sums of functions as in Theorem 1.3, i.e., functions
that satisfy merely

|f(x, t)| ≤ C0(|t|µ1 + |t|µ2) for all x ∈ RN , t ∈ R,
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where µiν ∈ (2, 2∗) for i = 1, 2. In that case, F : H1 → Lν is uniformly
continuous on bounded subsets of H1 with respect to the H1-Lν norms, and
F BL-splits along weakly convergent sequences in H1 with respect to their
weak limits.

Remark 1.6. The uniform continuity of operators F on bounded subsets of
H1 has been used, for example, in the proof of [18, Lemma 3.4]. Neverthe-
less, we are not aware of a published proof of this fact, which is nontrivial in
the generality stated in Theorem 1.3. Note that the uniform continuity of
F : H1(U)→ Lν(U) on bounded subsets of H1(U) is trivial if U is bounded,
by the compact Sobolev embedding H1(U) ⊆ Lp(U).

We now discuss additional aspects and applications of the results pre-
sented above. To this end we return to a simple setting on RN . Suppose
that f ∈ C(R) satisfies (1.3) with p ∈ (2, 2∗) and consider the functional
Φ: H1 → R given by

Φ(u) :=
∫
RN
f(u).

To prove the existence of a minimizer in typical variational problems involv-
ing Φ, Lions [14,15] introduces the concentration-compactness principle. It
is a tool to exclude the possibility of vanishing and of dichotomy along a
minimizing sequence (un), in order to obtain compactness of the sequence.
Here we are only concerned with dichotomy. In this case, the sequence (un)
is approximated by (u1

n + u2
n), where dist(supp(u1

n), supp(u2
n)) → ∞. For

local functionals like Φ it then follows easily that Φ(un) is approximated by
Φ(u1

n) + Φ(u2
n), a fact that yields, together with a hypothesis about energy

levels, a contradiction. Clearly, the same can be achieved if Φ BL-splits
along (un) in a suitable way. Before our Theorem 1.3, Lions’ approach
to concentration compactness was more general, in that, besides continu-
ity and appropriate growth bounds, no extra regularity hypotheses need to
be placed on f . On the other hand, the arguments are more involved than
when using BL-splitting because one has to insert cut-off functions to obtain
sequences u1

n and u2
n with disjoint supports. As a consequence, it is difficult

to give a purely functional (abstract) presentation of Lions’ approach.
To explain the advantage of an abstract presentation using BL-splitting,
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we note that to treat nonlocal functionals of convolution type, e.g.,

Ψ(u) :=
∫
RN

(f ∗ h(u))h(u),

the property of disjoint supports is not as effective anymore. In the convolu-
tion, the supports get “smeared out” and one has to control the interaction
with more involved estimates, see page 123 of [14]. This is aggravated when
one also has to consider the decoupling of derivatives of Ψ. We have shown
in [2] that using BL-splitting is effective in situations involving nonlocal
functionals. Moreover, BL-splitting even survives certain nonlocal opera-
tions, like the saddle point reduction, see [2, Theorem 5.1].
For particular cases there are other approaches to avoid conditions on

f besides continuity and growth bounds. We reformulate and simplify the
following cited results slightly to adapt them to our setting and notation.
In [3] we proved, for f ∈ C(R) satisfying (1.4) with µ := p− 1, and setting
ν := p/(p− 1), that the map Γ: H1 → H−1, given by

Γ(u)v :=
∫
RN
f(u)v,

BL-splits along a weakly convergent sequence if the weak limit is a function
tending to 0 as |x| → ∞. Another result was given in [13, Lemma 7.2],
when f ∈ C(R) satisfies (1.4) with µ := p− 2 and ν := p/(p− 2): The map
Λ: H1 → L2(H1,R) (here L2(H1,R) denotes the space of bounded bilinear
maps from H1 into R), given by

Λ(u)[v, w] :=
∫
RN
f(u)vw,

is uniformly continuous on bounded subsets ofH1. Together with the almost
BL-splitting of Λ given by Theorem 2.1 below this yields BL-splitting for Λ
along weakly convergent sequences. Note that the idea of the proof of the
latter result does not apply for the maps Φ and Γ defined above (under the
respective growth bounds on f). In both cases our result here is stronger,
since we show uniform continuity and BL-splitting into the spaces Lν , which
are continuously embedded in H−1 and L2(H1,R), respectively.
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A different application of Theorem 1.3, that is independent of variational
methods, is the general study of maps that are uniformly continuous on a
subset of an infinite dimensional Hilbert space. These play a role in infinite
dimensional potential theory [5, 12] or, more generally, in the theory of
stochastic equations in infinite dimensions [8, 9, 17].
The paper is structured as follows. In Section 2 we treat almost BL-

splitting of F along bounded sequences in Lp that converge in Lploc, and
along weakly convergent sequences in H1. In Section 3 we prove the uniform
continuity of F on bounded subsets of H1 and BL-splitting of F along
weakly convergent sequences. In Section 4 we prove the claims made in
Example 1.2.

2 Almost BL-Splitting
In this section we prove a result on the almost BL-splitting of superposition
operators in Lp along bounded sequences that converge in Lploc, and in H1

along weakly convergent sequences. This is a variation on Lions’ approach
in [14]. Note that here the periodicity assumption in x is not needed.
If r ∈ [1,∞] then denote by | · |r the norm of Lr.

Theorem 2.1. Consider µ > 0, ν ≥ 1, and C0 > 0, such that p := µν ≥ 1.
Suppose that f : RN×R→ R is a Caratheodory function that satisfies (1.4).
Denote by F the superposition operator on real functions induced by f .

(a) If (un) ⊆ Lp is bounded and converges in Lploc to a function u, then
u ∈ Lp and F : Lp → Lν almost BL-splits along (un) with respect to
u.

(b) If p ∈ [2, 2∗) and un ⇀ u in H1 then F : H1 → Lν almost BL-splits
along (un) with respect to u.

(c) In (b), if in addition (ūn) ⊆ H1 converges weakly and |un − ūn|p → 0
as n → ∞ then ūn ⇀ u in H1 and F almost BL-splits along (un)
and (ūn) with respect to u, preserving subsequences and the auxiliary
sequence (vn) in the following sense: for any subsequence nk there
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is a subsequence nk` and (v`) such that v` → u in H1 and, writing
u` := unk` and ū` := ūnk` we have

F(u`)−F(u` − v`)→ F(u)
and

F(ū`)−F(ū` − v`)→ F(u).

For the proof, let BR denote, for R > 0, the open ball in RN with center
0 and radius R.

Proof. (a): From (1.4) and from the theory of superposition operators [4]
it follows that F : Lp(U) → Lν(U) is continuous for any open subset U of
RN . For n ∈ N define Qn : [0,∞)→ [0,∞) by

Qn(R) :=
∫
BR
|un|p.

The functions Qn are uniformly bounded and nondecreasing. We may as-
sume that (Qn) converges pointwise almost everywhere to a bounded non-
decreasing function Q [14]. It is easy to build a sequence Rn → ∞ such
that for every ε > 0 there is R > 0, arbitrarily large, with

lim sup
n→∞

(Qn(Rn)−Qn(R)) ≤ ε.

Hence
∀ε > 0 ∃R > 0: lim sup

n→∞

∫
BRn\BR

|un|p ≤ ε and
∫
RN\BR

|u|p ≤ ε.

(2.1)
Consider a smooth cut off function η : [0,∞)→ [0, 1] such that η ≡ 1 on

[0, 1] and η ≡ 0 on [2,∞). Set vn(x) := η(2|x|/Rn)u(x). Then
lim
n→∞

vn = u in Lp. (2.2)

From the continuity of F on Lp(BR), vn = u on BR, limn→∞ un = u in
Lp(BR), and f(x, 0) = 0 for a.e. x ∈ RN we obtain

lim
n→∞

∫
BR

∣∣∣f(x, un)− f(x, un − vn)− f(x, vn)
∣∣∣ν dx

= lim
n→∞

∫
BR

∣∣∣f(x, un)− f(x, un − u)− f(x, u)
∣∣∣ν dx = 0.
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Since vn ≡ 0 in RN\BRn , this in turn yields for any ε > 0 and R chosen
accordingly, as in (2.1),

lim sup
n→∞

∫
RN
|f(x, un)− f(x, un − vn)− f(x, vn)|ν dx

= lim sup
n→∞

∫
BRn\BR

|f(x, un)− f(x, un − vn)− f(x, vn)|ν dx

≤ C lim sup
n→∞

∫
BRn\BR

(|un|µ + |un − vn|µ + |vn|µ)ν

≤ C lim sup
n→∞

∫
BRn\BR

(|un|p + |u|p)

≤ Cε,

where C is independent of ε. Letting ε tend to 0 and using (2.2) we obtain

lim
n→∞

∣∣∣F(un)−F(un − vn)−F(u)
∣∣∣
ν

= 0.

(b): The continuous embedding H1 ↪→ Lp implies that (un) is bounded
in Lp, and the compact embedding H1(U) ↪→ Lp(U) for bounded U implies
that un → u in Lploc. Defining vn as in (a) we therefore obtain that

vn → u in H1,

and F almost BL-splits along (un) with respect to u by (a).
(c): Since |un − ūn|p → 0 and un → v in Lploc it follows that ūn ⇀ v

in H1. Taking R large enough, (2.1) also holds true if we replace un by
ūn. Therefore, after passing to a subsequence for (un), and using the same
subsequence for (ūn), we obtain

lim
n→∞

∣∣∣F(ūn)−F(ūn − vn)−F(u)
∣∣∣
ν

= 0.

3 Uniform Continuity
Here we prove uniform continuity on bounded subsets of H1, making use
of the periodicity of f in x. As a consequence, we also obtain BL-splitting
along weakly convergent sequences in H1.
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For simplicity we will only prove the case A = I (the identity transforma-
tion). The general case follows in an analogous manner. Denote the respec-
tive translation action of the additive group ZN on functions u : RN → R
by

(a ? u)(x) := u(x− a), a ∈ ZN , x ∈ RN .

Let 〈·, ·〉 denote the standard scalar product in H1, defined by

〈u, v〉 :=
∫
RN

(∇u · ∇v + uv),

and let ‖ · ‖ denote the associated norm. Also denote by w-lim the weak
limit of a weakly convergent sequence.
We first recall a functional consequence of Lions’ Vanishing Lemma, [15,

Lemma I.1.].

Lemma 3.1. Suppose for a sequence (un) ⊆ H1 that an ? un ⇀ 0 in H1 for
every sequence (an) ⊆ ZN . Then un → 0 in Lp for all p ∈ (2, 2∗).

Proof. Note first that (un) is bounded in H1 since un ⇀ 0 in H1. We claim
that

sup
y∈RN

∫
y+B1
|un|2 → 0 as n→∞. (3.1)

If the claim were not true there would exist ε > 0 and a sequence (yn) ⊆ RN

such that, after passing to a subsequence of (un),∫
yn+B1

|un|2 ≥ ε.

Pick (an) ⊆ ZN such that |an + yn|∞ < 1 for all n. With R :=
√
N + 1 it

follows that an + yn +B1 ⊆ BR and hence∫
BR
|an ? un|2 ≥ ε

for all n. We reach a contradiction since an ? un ⇀ 0 in H1 and hence
an ?un → 0 in L2(BR) by the theorem of Rellich and Kondrakov. Therefore
(3.1) holds true.
The claim of the theorem now follows from [15, Lemma I.1.] with p = q =

2. Compare also with [18, Lemma 3.3].
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Proof of Theorem 1.3. We start by proving the uniform continuity. Let
(u0

i,n)n∈N0 be bounded sequences in H1 for i = 1, 2 and set C1 :=
maxi=1,2 lim supn→∞‖u0

i,n‖. Suppose for a contradiction that

|u0
1,n − u0

2,n|p → 0 as n→∞, (3.2)

and that there is C2 > 0 such that

|F(u0
1,n)−F(u0

2,n)|ν ≥ C2 for all n. (3.3)

Successively we will define infinitely many sequences (akn)n ⊆ ZN and
(uki,n)n ⊆ H1, i = 1, 2, indexed by k ∈ N0 and strictly increasing functions
ϕk : N→ N with the following properties:

max
i=1,2

lim sup
n→∞

‖uki,n‖ ≤ C1, (3.4)

lim
n→∞
|uk1,n − uk2,n|p = 0, (3.5)

lim inf
n→∞

|F(uk1,n)−F(uk2,n)|ν ≥ C2, (3.6)

w-lim
n→∞

(
−a`

ψk−1
`

(n)

)
? uki,n = 0 in H1, if 0 ≤ ` < k, for i = 1, 2, (3.7)

and
lim
n→∞
|amψ`m(n) − a`n| =∞ if 0 ≤ m < ` < k. (3.8)

Here

ψk` := ϕ`+1 ◦ ϕ`+2 ◦ · · · ◦ ϕk if ` = −1, 0, 1, . . . , k − 1
ψkk := idN.

We need to say something about the extraction of subsequences. In order
to obtain ϕk, (akn)n, and (uk+1

i,n )n from (uki,n), we first pass to a subsequence
(uki,ϕk(n))n of (uki,n)n and then use its terms in the construction. Once the
new sequences (akn)n and (uk+1

i,n )n are built we may remove a finite number
of terms at their start, modifying ϕk accordingly, with the goal of obtaining
additional properties. Beginning with the following iteration there are no
more retrospective changes to the sequences already built. This is to assure
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a well defined infinite sequence of sequences, from which eventually we take
the diagonal sequence. In this setting it seems clearer to make the selec-
tion of subsequences explicit, contrary to what is usually done when using
concentration compactness methods [14–16] or when proving a variational
splitting lemma.
For k = 0 the properties (3.4)– (3.8) are fulfilled by the definition of C1

and by (3.2) and (3.3). Assume now that (3.4)–(3.8) hold for some k ∈ N0.
Denote by Wk the set of v ∈ H1 such that there are a sequence (an) ⊆ ZN
and a subsequence of (uk1,n) with w-limn→∞ an ? u

k
1,n = v in H1.

If w-limn→∞ an ? u
k
1,n = 0 in H1 were true for all sequences (an) ⊆ ZN ,

by Lemma 3.1 it would follow that limn→∞ u
k
1,n = 0 in Lp. Equation (3.5)

and the continuity of F on Lp would lead to a contradiction with (3.6).
Therefore

qk := sup
v∈Wk

‖v‖ ∈ (0, C1].

Pick vk ∈ Wk such that

‖vk‖ ≥ qk
2 > 0. (3.9)

There are (akn)n ⊆ ZN and a strictly increasing function ϕk : N → N such
that w-limn→∞(−akn) ?uk1,ϕk(n) = vk in H1. By (3.5) and by Theorem 2.1(b)
and (c) there exists a sequence (vkn)n ⊆ H1 such that

lim
n→∞

vkn = vk, in H1, (3.10)

w-lim
n→∞

(−akn) ? uki,ϕk(n) = vk, in H1, for i = 1, 2, (3.11)

and

lim
n→∞

∣∣∣F((−akn)?uki,ϕk(n))−F((−akn)?uki,ϕk(n)−vkn)−F(vk)
∣∣∣
ν

= 0, i = 1, 2.

Set uk+1
i,n := uki,ϕk(n)−akn ?vkn. By the equivariance of F and the invariance

of the involved norms under the ZN -action,

lim
n→∞

∣∣∣F(uki,ϕk(n))−F(uk+1
i,n )−F(akn ? vk)

∣∣∣
ν

= 0, for i = 1, 2, (3.12)
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and, since by (3.11) ‖ · ‖2 BL-splits along (−akn)?uki,ϕk(n) with respect to vk,

lim
n→∞

∣∣∣‖uki,ϕk(n)‖2 − ‖uk+1
i,n ‖2 − ‖vk‖2

∣∣∣ = 0, for i = 1, 2. (3.13)

Equations (3.13) and (3.4) (for k) imply that

max
i=1,2

lim sup
n→∞

‖uk+1
i,n ‖ ≤ C1,

hence (3.4) for k+ 1. The definition of the sequences uk+1
i,n and (3.5) (for k)

imply that

lim
n→∞
|uk+1

1,n − uk+1
2,n |p = lim

n→∞
|uk1,ϕk(n) − uk2,ϕk(n)|p = 0, (3.14)

hence (3.5) for k + 1. It follows from (3.12) and (3.6) (for k) that

lim inf
n→∞

|F(uk+1
1,n )−F(uk+1

2,n )|ν = lim inf
n→∞

|F(uk1,ϕk(n))−F(uk2,ϕk(n))|ν ≥ C2,

(3.15)
hence (3.6) for k+1. Last but not least, from (3.7) (for k), (3.9), and (3.11)
it follows that

lim
n→∞
|amψkm(n) − akn| =∞ if m < k. (3.16)

Since (3.8) is true for k, together with (3.16) we obtain (3.8) for k + 1.
Moreover, (3.16), (3.7) (for k) and (3.10) yield

w-lim
n→∞

(−a`ψk
`

(n))?u
k+1
i,n = w-lim

n→∞

(
(−a`

ψk−1
`

(ϕk(n)))?u
k
i,ϕk(n)−(akn−a`ψk

`
(n))?v

k
n

)
= 0, in H1, if ` < k.

By the definition of akn,

w-lim
n→∞

(−akn) ? uk+1
i,n = w-lim

n→∞

(
(−akn) ? uki,ϕk(n) − vkn

)
= 0, in H1.

This proves (3.7) for k + 1.
We now skip a finite number of elements of the sequences constructed

in this induction step and adapt ϕk accordingly. Choosing m ∈ N large
enough, by (3.14) and (3.15) we obtain

|uk+1
1,m+n − uk+1

2,m+n|p ≤
1

k + 1

14



and
|F(uk+1

1,m+n)−F(uk+1
2,m+n)|ν ≥ C2 −

1
k + 1

for all n ∈ N. Property (3.8) (for k + 1) implies that

lim
n→∞
|amψkm(n) − a`ψk

`
(n)| = lim

n→∞
|amψ`m(ψk

`
(n)) − a

`
ψk
`

(n)| =∞, if m < ` ≤ k.

Since ‖ · ‖2 BL-splits along weakly convergent sequences this yields, together
with (3.10), that

lim
n→∞

∥∥∥∥∥
k∑
j=`

aj
ψkj (n) ? v

j

ψkj (n)

∥∥∥∥∥
2

=
k∑
j=`
‖vj‖2

for all ` ≤ k. For large enough m this implies
∥∥∥∥∥
k∑
j=`

aj
ψk−1
j (ϕk(m+n)) ? v

j

ψk−1
j (ϕk(m+n))

∥∥∥∥∥
2

≤ 2
k∑
j=`
‖vj‖2,

for all n ∈ N and ` ≤ k.

Fixing m with these properties, writing uk+1
i,n , akn, and vkn instead of uk+1

i,m+n,
akm+n, and vkm+n, respectively, and writing ϕk(n) instead of ϕk(m + n), all
properties proved above remain valid, and, in addition, the following hold
true:

|uk+1
1,n − uk+1

2,n |p ≤
1

k + 1 (3.17)

and
|F(uk+1

1,n )−F(uk+1
2,n )|ν ≥ C2 −

1
k + 1 (3.18)

for all n ∈ N and∥∥∥∥∥
k∑
j=`

aj
ψkj (n) ? v

j

ψkj (n)

∥∥∥∥∥
2

≤ 2
k∑
j=`
‖vj‖2, for all n ∈ N and ` ≤ k. (3.19)

15



Now we consider the process of constructing sequences as finished and
proceed to prove properties of the whole set. By induction, (3.13) leads to

‖uk+1
1,n ‖2 = ‖u0

1,ψk−1(n)‖
2 −

k∑
j=0
‖vj‖2 + o(1), as n→∞,

and hence ∑∞j=0‖vj‖2 ≤ C1 by (3.4). In view of (3.9) this yields

qk → 0, as k →∞. (3.20)

We claim that the diagonal sequence (un1,n) satisfies

bn ? u
n
1,n ⇀ 0, in H1, as n→∞, for every sequence (bn) ⊆ Z. (3.21)

Note that by construction, for all ` ≤ k

uk1,n = u`1,ψk−1
`−1 (n) −

k−1∑
j=`

aj
ψk−1
j (n) ? v

j

ψk−1
j (n).

Hence we have the representation

un1,n = uk1,ψn−1
k−1 (n) −

n−1∑
j=k

aj
ψn−1
j (n) ? v

j

ψn−1
j (n), if n ≥ k. (3.22)

First we show that

w-lim
n→∞

(−ak
ψn−1
k

(n)) ? u
n
1,n = 0, in H1, for all k ∈ N0. (3.23)

Fix k ∈ N0. For every w ∈ H1 and ε > 0 there is `0 ≥ k + 1 such that

‖w‖2
∞∑
j=`0
‖vj‖2 ≤ ε2/2.

Then (3.19), (3.22), and the translation invariance of the norm yield for

16



n ≥ `0∣∣∣〈(−ak
ψn−1
k

(n)) ? u
n
1,n, w

〉∣∣∣
≤
∣∣∣〈(−ak

ψn−1
k

(n)) ? u
k+1
1,ψn−1

k
(n), w

〉∣∣∣
+
∣∣∣∣∣
〈

`0−1∑
j=k+1

(aj
ψn−1
j (n) − a

k
ψn−1
k

(n)) ? v
j

ψn−1
j (n), w

〉∣∣∣∣∣
+ ‖w‖

∥∥∥∥∥
n−1∑
j=`0

aj
ψn−1
j (n) ? v

j

ψn−1
j (n)

∥∥∥∥∥
≤
∣∣∣〈(−ak

ψn−1
k

(n)) ? u
k+1
1,ψn−1

k
(n), w

〉∣∣∣
+
∣∣∣∣∣
〈

`0−1∑
j=k+1

(aj
ψn−1
j (n) − a

k
ψn−1
k

(n)) ? v
j

ψn−1
j (n), w

〉∣∣∣∣∣+ ε.

It is easy to see that the sequence (ψn−1
k (n))n is strictly increasing. Hence

the first term in the last expression tends to 0 as n→∞ by (3.7), and the
second term tends to 0 by (3.10) and (3.16). Since ε > 0 and w ∈ H1 were
arbitrary, this proves (3.23).
To finish the proof of (3.21), suppose for a contradiction that

w-limn→∞ bn ? u
n
1,n = v 6= 0 in H1, for a subsequence. Equation (3.23)

implies that
lim
n→∞

∣∣∣∣bn + ak
ψn−1
k

(n)

∣∣∣∣ =∞,

for every k ∈ N0. Pick k ∈ N0 such that qk < ‖v‖. This is possible by
(3.20). Then, for every w ∈ H1, it follows from (3.19) and (3.22) that∣∣∣〈bn ? uk1,ψn−1

k−1 (n) − v, w
〉∣∣∣

≤
∣∣∣〈bn ? un1,n − v, w〉∣∣∣+

∣∣∣∣∣
〈
n−1∑
j=k

(bn + aj
ψn−1
j (n)) ? v

j

ψn−1
j (n), w

〉∣∣∣∣∣→ 0

as n→∞, similarly as above. Hence

w-lim
n→∞

(
bn ? u

k
1,ψn−1

k−1 (n)

)
= v

17



with ‖v‖ > qk. Since
(
uk1,ψn−1

k−1 (n)

)
n
is a subsequence of (uk1,n)n, this contra-

dicts the definition of qk and proves (3.21).
We are now in the position to finish the proof of uniform continuity of F .

Equations (3.17) and (3.18) imply that

lim
n→∞
|un1,n − un2,n|p = 0 (3.24)

and
lim inf
n→∞

|F(un1,n)−F(un2,n)|ν ≥ C2. (3.25)

By Lemma 3.1 and (3.21) un1,n → 0 in Lp. Together with (3.24) and (3.25)
this contradicts the continuity of F on Lp and therefore proves the assertion
about uniform continuity.
It only remains to prove BL-splitting for F along weakly convergent se-

quences in H1 with respect to their weak limits. Suppose that un ⇀ v in
H1. By Theorem 2.1(b) there is a sequence (vn) ⊆ H1 such that vn → v in
H1 and, after passing to a subsequence of (un),

F(un)−F(un − vn)→ F(v), in Lν (3.26)

as n → ∞. Since (un) and (vn) are bounded in H1, and by the uniform
continuity of F on bounded subsets of H1 with respect to the Lp-norm (and
hence also with respect to the H1-norm), it follows that we may replace vn
by v in (3.26). Using this, a standard reasoning by contradiction yields the
claim.

4 Construction of Examples
Proof of Example 1.2. We first treat the case f(t) := cos(πt)|t|p. Set Rn :=
n−p/N and fix a sequence (xn) ⊆ RN such that |xn| → ∞ and BRm(xm) ∩
BRn(xn) = ∅ for m 6= n. Define real functions u and un on RN by setting

u :=
∞∑
k=1

χBRk (xk), wn := 2nχBRn (xn), and un := u+ wn,

18



for each n ∈ N. It is straightforward to show that u ∈ Lp, that (un) is a
bounded sequence in Lp, and that un → u pointwise and in Lploc. On the
other hand, denoting by ωN the volume of the unit ball in RN , we obtain∣∣∣∣∫

RN
f(un)− f(un − u)− f(u)

∣∣∣∣
=
∣∣∣∣∣
∫
BRn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

=
∣∣∣∣∣
∫
BRn (xn)

cos((2n+ 1)π)(2n+ 1)p − cos(2nπ)(2n)p − cos π
∣∣∣∣∣

=
∣∣∣∣∣
∫
BRn (xn)

(−(2n+ 1)p − (2n)p + 1)
∣∣∣∣∣

= ωN

((
2 + 1

n

)p
+ 2p −

(
1
n

)p)
→ 2p+1ωN ,

(4.1)

as n→∞. Since 2p+1ωN > 0, this implies the claim.
For the other example, f(t) := cos(π/t)|t|p, we set Rn := np/N and fix a

sequence (xn) ⊆ RN such that |xn|/Rn →∞ and BRm(xm) ∩ BRn(xn) = ∅
for m 6= n. We define

u :=
∞∑
k=1

1
2n(2n− 1)χBRk (xk), wn := 1

2nχBRn (xn),

and un := u+ wn

for each n ∈ N. Then again, u ∈ Lp, (un) is a bounded sequence in Lp, and
un → u pointwise and in Lploc. For x ∈ BRn(xn) we obtain

u(x) + wn(x) = 1
2n(2n− 1) + 1

2n = 1
2n− 1 (4.2)
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and hence∣∣∣∣∫
RN
f(un)− f(un − u)− f(u)

∣∣∣∣
=
∣∣∣∣∣
∫
BRn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

≥
∣∣∣∣∣
∫
BRn (xn)

cos((2n− 1)π)
(

1
2n− 1

)p
− cos(2nπ)

(
1

2n

)p∣∣∣∣∣
−
∫
BRn (xn)

(
1

2n(2n− 1)

)p

=
∣∣∣∣∣
∫
BRn (xn)

−
(

1
2n− 1

)p
−
(

1
2n

)p∣∣∣∣∣−
∫
BRn (xn)

(
1

2n(2n− 1)

)p

= ωN

((
1

2− 1
n

)p
+
(

1
2

)p
−
(

1
2(2n− 1)

)p)

→ ωN
2p−1 ,

(4.3)

as n→∞. This yields the claim.

Proof of Remark 1.4. The construction of these counterexamples is closely
related to Example 1.2. First consider the function f(t) := cos(π/t)t2. We
define the Lipschitz-continuous cut-off function η : R→ R by

η(t) :=


1, t ≤ 0,
1− t, 0 < t < 1,
0, 1 ≤ t,

introduce Rn := n2/N , pick a sequence (xn) ⊆ RN such that |xn|/Rn → ∞
and BRm+1(xm) ∩BRn+1(xn) = ∅ for m 6= n, and define

u(x) :=
∞∑
k=1

1
2n(2n− 1)η(|x− xk| −Rk), wn(x) := 1

2nη(|x− xn| −Rn),

and un := u + wn for each n ∈ N and x ∈ RN . It is straightforward to
check that u,wn ∈ H1 and that (wn) is bounded in H1. Since wn → 0 a.e.,
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wn ⇀ 0 in H1. Using (4.2) we estimate∫
BRn+1(xn)\BRn (xn)

∣∣∣f(u+ wn)− f(wn)− f(u)
∣∣∣

≤
∫
BRn+1(xn)\BRn (xn)

( 1
2n− 1

)2

+
(

1
2n

)2

+
(

1
2n(2n− 1)

)2


≤ 3ωN
n2 ((Rn + 1)N −RN

n ) = 3ωN((1 + n−2/N)N − 1)→ 0

as n→∞. Hence by the calculation in (4.3)∣∣∣∣∫
RN
f(un)− f(un − u)− f(u)

∣∣∣∣
=
∣∣∣∣∣
∫
BRn+1(xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

≥
∣∣∣∣∣
∫
BRn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

−
∫
BRn+1(xn)\BRn (xn)

∣∣∣f(u+ wn)− f(wn)− f(u)
∣∣∣

→ ωN
2p−1

and the claim follows. Note that the example above has no simple analogue
in the case f(t) := cos(π/t)|t|p for p > 2, using Rn := np/N as in the proof of
the second case of Example 1.2. The reason is that the analogously defined
sequence (wn) is not bounded in L2 in that case.
Now we treat the function f(t) := cos(πt)|t|2∗ . To this end put Rn :=

n−2∗/N , fix a sequence (xn) ⊆ RN such that |xn| → ∞ and B2Rm(xm) ∩
B2Rn(xn) = ∅ for m 6= n, and choose γ ∈ (0, 1) small enough such that

(
32∗ + 22∗ + 1

)(
(1 + γ)N − 1

)
≤ 22∗+1

2 . (4.4)

Define

u(x) :=
∞∑
k=1

η

(
|x− xk| −Rk

γRk

)
, wn(x) := 2nη

(
|x− xk| −Rn

γRn

)
,
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and un := u + wn for each n ∈ N and x ∈ RN . It follows that supp(wn) =
B(1+γ)Rn(xn) for each n, where Br(z) denotes the closed ball in RN with
radius r and center z. Again, it is straightforward to check that u,wn ∈ H1,
that (wn) is bounded inH1, and that wn ⇀ 0 inH1. Using (4.4) we estimate
∫
B(1+γ)Rn (xn)\BRn (xn)

∣∣∣f(u+ wn)− f(wn)− f(u)
∣∣∣

≤
∫
B(1+γ)Rn (xn)\BRn (xn)

(
(1 + 2n)2∗ + (2n)2∗ + 1

)
≤ ωN

(
(3n)2∗ + (2n)2∗ + n2∗)(((1 + γ)Rn)N −RN

n

)
= ωN

(
32∗ + 22∗ + 1

)(
(1 + γ)N − 1

)
≤ 22∗+1ωN

2

for all n. Hence by the calculation in (4.1)
∣∣∣∣∫

RN
f(un)− f(un − u)− f(u)

∣∣∣∣
=
∣∣∣∣∣
∫
B(1+γ)Rn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

≥
∣∣∣∣∣
∫
BRn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣

−
∫
B(1+γ)Rn (xn)\BRn (xn)

∣∣∣f(u+ wn)− f(wn)− f(u)
∣∣∣

≥
∣∣∣∣∣
∫
BRn (xn)

f(u+ wn)− f(wn)− f(u)
∣∣∣∣∣− 22∗+1ωN

2

→ 22∗+1ωN
2

and the claim follows. Note that this example has no simple analogue in
the case f(t) := cos(πt)|t|p for p < 2∗, using Rn := n−p/N as in the proof of
the first case of Example 1.2. Here the reason is that for the analogously
defined sequence (wn), (∇wn) is not bounded in L2.
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