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Abstract

The time-independent superlinear Schrödinger equation with spatially periodic and

positive potential admits sign-changing two-bump solutions if the set of positive solu-

tions at the minimal nontrivial energy level is the disjoint union of period translates

of a compact set. Assuming a reflection symmetric potential we give a condition on

the equation that ensures this splitting property for the solution set. Moreover, we

provide a recipe to explicitly verify the condition, and we carry out the calculation

in dimension one for a specific class of potentials.

1. Introduction and Statement of Results

Solutions of the stationary nonlinear Schrödinger equation

(1.1) − ∆u + V (x)u = |u|p−2u, u ∈ H1(RN),

yield standing waves of the associated time-dependent nonlinear Schrödinger equation. We
are interested in the case where V is positive and periodic.

Starting with a paper by Coti Zelati and Rabinowitz [9] there has been a lot of activity
regarding the existence of so-called “multibump” solutions of (1.1), see the survey by
Rabinowitz [20] and the references in [1]. Roughly, one assumes the existence of an isolated
mountain pass solution u0 and obtains solutions near the sum of multiple translated copies
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of u0 and −u0. Kabeya and Tanaka [15] gave the first (parameter-dependent) example of
potentials V such that the assumption of existence of an isolated u0 is satisfied.

Taking a somewhat different approach, in [3] we constructed sign-changing two-bump

solutions under the weaker assumption that the solution set at the minimal energy level c0

splits into translates of a compact set, see condition (S)c0 below. We also gave parameter-
dependent examples where this condition is satisfied, covering wider classes of potentials
than considered in [15].

Initially, multibump solutions appeared as homoclinics in Hamiltonian systems in the
work of Séré [23, 24] and Coti Zelati and Rabinowitz [8]. Only countability of the number
of homoclinic orbits needed to be assumed. In that setting there also exist results that
carry out the multibump construction without excluding the appearance of continua of
homoclinics, see [18, 21, 26]. Moreover, there are many results about the existence of
multibump solutions in Hamiltonian systems with slowly oscillating forcing term; for this
type of result we mention the papers [4–7,10,22]. This shows that for Hamiltonian systems
the known results about multibump solutions are considerably better.

Our aim in the present paper is to provide more examples of potentials in (1.1) where the
splitting condition (S)c holds, focusing on concrete, calculable examples. It turns out that
generally slowly oscillating forcing terms induce this property, reminiscent of the results for
Hamiltonian systems. The advantage of our results lies in the computability. In dimension
1 we carry out the computations and show that our method leads to reasonable results.

There is one drawback in that [3] only constructs two-bump solutions. We hope to
remedy this situation in a forthcoming paper, by constructing multibump solutions only
assuming the splitting condition.

Set 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ if N = 1, 2, and let p ∈ (2, 2∗). Denote
the ith coordinate of x ∈ R

N by xi and set ∂i := ∂/∂xi. For the statement of our results
assume the following hypotheses on V :

(V1) V ∈ C1(RN) and V ′ is Lipschitz continuous.

(V2) inf V (RN) > 0.

(V3) V is periodic in every coordinate xi, with minimal period τi > 0 in the ith coordinate.

(V4) V is even in xi, for all i = 1, 2, . . . , N .

The symmetry condition (V4) above has been considered by other authors, see for exam-
ple [11, 14, 27].

The continuously differentiable functional

J(u) :=
1
2

∫

RN
(|∇u|2 + V (x)u2) dx − 1

p

∫

RN
|u|p dx,

defined on the space E := H1(RN ) with norm given by ‖u‖2 =
∫
RN (|∇u|2 + u2) dx, defines

a variational setting for solving (1.1): Weak solutions of (1.1) correspond to critical points
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of J . Denote

K := { u ∈ E\{0} | J ′(u) = 0 },

K+ := { u ∈ K | u > 0 },

K− := { u ∈ K | u < 0 },

Kc := { u ∈ K | J(u) ≤ c },

and

Kc
± := Kc ∩ K±

for c ∈ R. The existence of a nontrivial solution of (1.1), and hence K 6= ∅, was first
shown by Rabinowitz, cf. [19]. The least nontrivial energy level

(1.2) c0 := inf J(K)

exists, is positive, and is achieved by a positive function. Moreover, c0 is the least mountain
pass value. These facts are well known; for proofs see for example [3].

Define T ∈ L(RN) to be the diagonal matrix with diagonal elements τ1, τ2, . . . , τN . The
set Z

N induces an action “⋆” on E by (d ⋆ u)(x) := u(x − Td) for u ∈ E, d ∈ Z
N and

x ∈ R
N (translation in steps of period length). It follows that J is invariant under this

action since V is “T -periodic in x”.
For c < 2c0 we say that K+ splits at the level c if

(S)c

There is a compact subset K ⊆ Kc
+ such that the following hold:

(i) Kc
+ = Z

N ⋆ K,

(ii) K ∩ (ZN \{0}) ⋆ K = ∅.

By condition (V1) V ∈ W 2,∞(RN ), the Sobolev space of functions in L∞(RN ) with weak
first and second partial derivatives in L∞(RN ). We introduce an integral condition for the
problem (1.1):

(I)c

If u ∈ Kc
+ is even in xi for some i ∈ { 1, 2, . . . , N }, then

∫

RN
u2∂2

i V dx ≤ 0.

We also say that a potential V with (V1)–(V4) satisfies (I)c if (I)c holds for the correspond-
ing Eq. (1.1). Our main result reads:

1.1 Theorem. Suppose that V satisfies (V1)–(V4) and that c ∈ [c0, 2c0). Then (I)c implies

(S)c.
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The previous theorem utilizes the reflection symmetry of V at planes { xi = 0 } with
arguments in the spirit of the moving plane method [12]. There one fixes a positive so-
lution u and considers certain extrema of continua of hyperplanes X such that u and its
reflection at X are ordered on one side of X. In our work here we consider a discrete set
of hyperplanes parallel to the coordinate axes, locked with xi = kτi, k ∈ Z, and apply
reflections to solutions from Kc

+. This set may include a continuum. In that sense our use
of this technique is inverse to the moving plane method, and one may speak of hyperplanes
skipping at period intervals.

The following theorem helps to check the validity of (I)c for a given potential V and
c ∈ [c0, 2c0). We state it here since it may be of independent interest. Note that it is
proved in much more generality in Sect. 3 below.

1.2 Theorem. Suppose that V satisfies (V1), (V2), and ‖V ‖C1 < ∞. Fix ε > 0. Then

there are positive constants C1, C2, C3 and C4 that depend only on ε, p, inf V , and on an

upper bound for ‖V ‖C1, and that can be estimated explicitly, with the following property:

Given any u ∈ K2c0−ε
+ denote by M the set of local maximum points of u, and denote by

x0 the center of mass of conv(M). Then

C3e−C1|x−x0| ≤ u(x)2 ≤ C4e−C2|x−x0|

for all x ∈ R
N .

This theorem leads to the construction of slowly oscillating potentials V that satisfy (I)c,
as follows:

1.3 Theorem. Suppose that W satisfies (V1)–(V4) in place of V , and that it is 1-periodic

in all coordinates. Also assume for i = 1, 2, 3, . . . , N that ∂2
i W exists in the classical sense

in a neighborhood of {xi = 0} and that it is continuous and negative in that neighborhood.

If T ∈ L(RN) is a diagonal matrix with positive diagonal elements τ1, τ2, . . . , τN , define

VT (x) := W (T −1x) for x ∈ R
N . Conditions (V1)–(V4) remain valid for VT in place of V ,

now with the periods τi. Then, given c ∈ [c0, 2c0), there is a diagonal matrix with positive

diagonal elements T0 ∈ L(RN), only depending on c, p and the data of W in a way that

can be made explicit, such that V := VT satisfies (I)c for T ≥ T0.

1.4 Remark. A potential W as in the preceding theorem can be constructed easily: Sup-
pose that ϕ ∈ C1(R) is positive, even, and 1-periodic. Also suppose that ϕ′ is Lipschitz
continuous, that ϕ′′ exists classically near 0, and that ϕ′′(0) < 0. Then W (x) :=

∏N
i=1 ϕ(xi)

satisfies all requirements of the theorem.

1.5 Example. We demonstrate that Theorems 1.1 and 1.3 yield reasonable concrete ex-
amples for functions V that satisfy (S)c0 , at least in dimension one. We specialize to the
case p = 20 and consider the equation

(1.3) − u′′ + V u = |u|18u, u ∈ H1(RN)

with V given in Fig. 1. Then (S)c0 holds for (1.3).
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Figure 1: V with min V = 5, max V = 15, and period 31.

The paper is structured as follows: In Section 2 we prove Theorem 1.1. In Section 3 we
prove Theorem 1.2 in a more general setting. This result is independent of Section 2. At
the end of Section 3 one finds the proof of Theorem 1.3. The recipe for the calculations of
Example 1.5 is explained in Section 4. Throughout we denote by BR(x) ⊆ R

N the closed
ball with center x and radius R.

2. Periodicity and Symmetry

We prove Theorem 1.1 in a more general setting, replacing the nonlinear term in (1.1) by
a function f and considering

(2.1) − ∆u + V (x)u = f(u), u ∈ H1(RN)

instead. We have refrained from considering an x-dependency in the nonlinearity, even
though this could probably be done. In that case one would have to account for interactions
between f and V . To keep things simple, using

F (u) :=
∫ u

0
f(s) ds

we assume (V1)–(V4) and the following:

(F1) f ∈ C1(R), and f ′ is Hölder continuous on bounded subsets of R.

(F2) f(u) = o(|u|) as u → 0.

(F3) |f ′(u)| ≤ a(1 + |u|p−2) for u ∈ R, with some p ∈ (2, 2∗).

(F4) f ′(u)u2 ≥ (θ − 1)f(u)u > 0 for u 6= 0, with some θ > 2.

2.1 Remark. Conditions (V1) and (F1) imply that every solution of (2.1) is in C3,α for
some α > 0. We do not strive for the most general regularity assumptions here.
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Using the energy functional

J(u) :=
1
2

∫

RN
(|∇u|2 + V (x)u2) dx −

∫

RN
F (u) dx

we reuse the definitions of sets of critical points of J given in Section 1. Since here we do
not assume oddness of f we use

(2.2) c0 := inf J(K+)

instead of (1.2).

2.2 Lemma. Suppose we are given i ∈ { 1, 2, . . . , N } and u ∈ K+ that is even in xi, and

such that

(2.3)
∫

RN
u2∂2

i V dx ≤ 0.

If v ∈ E is odd in xi, if v(x) 6= 0 for xi 6= 0, and if

(2.4) − ∆v + V (x)v = µf ′(u)v

for some µ ∈ R, then µ < 1.

Proof. The idea of the proof is roughly the following: If v is as in the statement and solves
(2.4) with µ ≥ 1 then v oscillates at least as fast as ∂iu by (2.3) and by differentiating
(2.1) with respect to xi. We also see that v 6≡ ∂iu because ∂iV 6≡ 0. It therefore follows
from ∂iu = v = 0 on { xi = 0 } and ∂iu → 0 as |x| → ∞ that v has a zero in { xi > 0 }.
Contradiction!

Set Ω := { x ∈ R
N | xi > 0 } and define smooth functionals Φ, Ψ: H1

0 (Ω) → R by setting

Φ(v) :=
∫

Ω
(|∇v|2 + V v2) dx and Ψ(v) :=

∫

Ω
f ′(u)v2 dx.

Also consider the set S := { v ∈ H1
0 (Ω) | Ψ(v) = 1 }. Then S is a smooth closed submani-

fold of H1
0 (Ω).

The generalized eigenvalue problem

−∆v + V (x)v = µf ′(u)v, x ∈ Ω,

has the eigenvalue µ and the corresponding eigenvector v ∈ S if and only if v is a critical
point of Φ|S with Φ(v) = µ.

Since u decays exponentially at infinity, and since f ′ is Hölder continuous at u = 0,
f ′(u(x)) is bounded and decays exponentially at infinity. Hence Ψ is weakly sequentially
continuous, and S is weakly sequentially closed. Moreover, Φ is weakly sequentially lower
semicontinuous. Therefore Φ attains its minimum on S in an element v0 with eigenvalue
µ0. Arguing as in the proof of [25, Theorem 2.5] it follows that µ0 is simple, and we may
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assume that v0 > 0. The positivity of u implies that f ′(u(x)) > 0, and two eigenfunctions
v1, v2 with eigenvalues µ1 6= µ2 satisfy

∫

Ω
f ′(u)v1v2 dx = 0.

Hence all eigenfunctions except v0 change sign.
Given v and µ as in the statement of the lemma, we may assume that v > 0 on Ω. It

follows from the considerations above that v = v0 and µ = µ0. Note that by Remark 2.1
it holds that

(2.5) − ∆∂iu + V ∂iu = f ′(u)∂iu − u∂iV.

Set w := s∂iu where s > 0 is chosen such that Ψ(w) = 1. Recall that ∂iV = 0 on { xi = 0 }
because V is even in xi. Then (2.5) implies

(2.6) µ ≤ Φ(w) = 1 − s2
∫

Ω
u∂iu∂iV dx = 1 +

s2

2

∫

Ω
u2∂2

i V dx ≤ 1

since, by assumption and by the evenness of u2 and ∂2
i V , the last integral term is nonpos-

itive. If µ = 1 were true then (2.6) would be an equality, w a minimum point of Φ|S , and
hence ∂iu would solve (2.4) with µ = µ0 = 1. Equation (2.5) would imply, together with
u > 0, that ∂iV ≡ 0. But this would contradict (V3). Hence we have proved µ < 1.

2.1. Proof of Theorem 1.1

Suppose we are given c ∈ [c0, 2c0) such that (I)c holds. Consider the action of ZN on itself
induced by addition. We will build an equivariant map α : Kc

+ → Z
N such that α−1(0) is

compact. Then (S)c is satisfied with K := α−1(0).
First we fix i ∈ { 1, 2, . . . , N } and construct the ith component αi of α. For k ∈ Z

denote by
Ωk := { x ∈ R

N | xi < kτi }
an affine half-space, and by ρk : RN → R

N ,

ρk(x) := (x1, x2, . . . , xi−1, 2kτi − xi, xi+1, . . . , xN )

reflection at ∂Ωk. For u ∈ Kc
+ set

A(u) := { k ∈ Z | u > u ◦ ρk on Ωk and ∂iu < 0 on ∂Ωk },

B(u) := { k ∈ Z | u < u ◦ ρk on Ωk and ∂iu > 0 on ∂Ωk },

and
αi(u) := inf A(u).

Below we show that αi(u) is finite for every u ∈ Kc
+ and that αi is continuous. We

obtain a continuous map α : Kc
+ → Z

N with components αi. It is obvious that α is
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equivariant with respect to the action of ZN . To show that α−1(0) is compact, assume that
we are given a sequence (un) ⊆ α−1(0). Since J(un) ≤ c, the standard splitting lemma,
cf. [3, Proposition 2.5], yields u0 ∈ Kc

+ and a sequence (dn) ⊆ Z
N such that, after passing

to a subsequence, dn ⋆ un → u0. By equivariance and continuity,

dn = dn + α(un) = α(dn ⋆ un) → α(u0).

Hence dn = α(u0) for n large, and un → (−α(u0)) ⋆ u0 as n → ∞. Since (−α(u0)) ⋆ u0 ∈
α−1(0) this proves compactness of α−1(0), and we conclude.

It remains to show that αi is continuous for fixed i. The basic idea to do this is the
following: Arguments similar to those used in the moving plane method (we follow the
presentation in [16]) yield that αi : Kc

+ → Z is well defined, and continuous outside of
points u ∈ Kc

+ with the following property: u is even in xi, and the kernel of −∆+V −f ′(u)
contains a nonzero element that is odd in xi and has exactly one sign change. In turn, the
existence of such u is excluded by Lemma 2.2.

Let m denote the minimum of V . We introduce the notation

b1 := sup{ u0 ≥ 0 | ∀u ∈ (0, u0] : f(u) ≤ mu/2 }.

If k ∈ Z and u ∈ K+, below we will frequently consider ū := u − u ◦ ρk. It holds that

(2.7) − ∆ū + (V − g)ū = 0 in R
N ,

where we have set

(2.8) g(x) :=
∫ 1

0
f ′(su(x) + (1 − s)u(ρk(x))) ds.

This follows since by (V3) and (V4) V ◦ ρk = V .
First we show that

(2.9) − ∞ < αi(u) < ∞ for all u ∈ Kc
+.

Pick some u ∈ Kc
+ and 0 < R0 < R1 with the following properties:

max u(RN\BR0(0)) ≤ b1,

max u(RN\BR1(0)) < min u(BR0(0)).

Suppose that k ∈ Z and k ≥ R1/τi. Set ū := u − u ◦ ρk. Then ū > 0 in BR0(0), ū = 0
on ∂Ωk, ū(x) → 0 as |x| → ∞, and 0 ≤ g(x) ≤ m/2 for x ∈ Ωk\BR0(0). Since ū
satisfies (2.7), the strong maximum principle implies that ū > 0 in Ωk and ∂iū < 0 on
∂Ωk . Hence k ∈ A(u). In the same way we see that −k ∈ B(u). We have thus shown that
[R1/τi, ∞) ∩ Z ⊆ A(u) and (−∞, −R1/τi] ∩ Z ⊆ B(u). As A(u) ∩ B(u) = ∅, we obtain
αi(u) ∈ [−R1/τi − 1, R1/τi + 1], proving (2.9).
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We now proceed to prove that αi is continuous, starting with upper semicontinuity.
Note that on K+ the E- and C1-topologies coincide. This follows for example from [2,
Thm. B.2(a)], considering that the time-1-map ϕ1 is bijective on K, where ϕ is the parabolic
semiflow induced by the parabolic equation related to (1.1). That part of the theorem
applies here although we are working on R

N instead of a bounded domain.
Fix some u0 ∈ Kc

+. Set k0 := αi(u0) and pick x0 ∈ ∂Ωk0 . There is R > 0 such that
|u0| ≤ b1 on R

N\BR(x0). Moreover, there is δ > 0 such that u > u◦ρ0 on BR(x0)∩Ωk0 , and
∂iu < 0 on BR(x0)∩∂Ωk0 if ‖u−u0‖C1 ≤ δ. Suppose now that u ∈ Kc

+ satisfies ‖u−u0‖C1 ≤
δ. Set ū := u − u ◦ ρk0 . Then ū > 0 on BR(x0) ∩ Ωk0 , ∂iu < 0 on BR(x0) ∩ ∂Ωk0 , ū = 0
on ∂Ωk0 , ū(x) → 0 as |x| → ∞, and 0 ≤ g(x) ≤ m/2 for x ∈ Ωk0\BR(x0). Again, (2.7)
implies by the strong maximum principle that k0 ∈ A(u) and hence αi(u) ≤ k0 = αi(u0).
This proves upper semicontinuity of αi at u0.

The most involved part of the proof is to show lower semicontinuity of αi. It is here that
condition (I)c plays a fundamental role through an application of Lemma 2.2. Suppose
that we are given (un) ⊆ Kc

+, with un → u0 as n → ∞. It was shown in the proof
of [3, Proposition 5.2] that there are positive constants D1 and D2 such that

∫

RN \Br(0)
(|∇un|2 + u2

n) dx ≤ ‖un‖2D1e−D2r

for all n ∈ N. Using the boundedness of ‖un‖2 and [13, Theorem 8.17] we therefore obtain
positive constants D3 and D4 such that

un(x) ≤ D3e−D4|x|

for all n ∈ N and x ∈ R
N . Note that for the following argument it is immaterial whether

these constants depend on u0 or not. We infer that there is R0 > 0 such that

sup
x∈RN \BR0

(0)

un(x) ≤ b1 for all n ∈ N.

Moreover, since un → u0 in C1 there is R1 > 0 such that

sup
x∈RN \BR1

(0)

un(x) ≤ min
x∈BR0

(0)
un(x).

As in the proof of (2.9) it follows that

αi(un) ∈ [−R1/τi − 1, R1/τi + 1] for all n ∈ N.

After passing to a subsequence and translating suitably we may therefore assume that
αi(un) = 0 for all n ∈ N.

Set ūn := un − un ◦ ρ0 for n = 0, 1, 2, . . .. Then ūn > 0 in Ω0 and ūn → ū0 in C1(RN).
Therefore ū0 ≥ 0 in Ω0, and moreover, (2.7) holds with ū replaced by ū0. If we can
exclude that ū0 vanishes identically on Ω0 then the strong maximum principle yields that

9



αi(u0) ≤ 0 and we conclude. Note that in this situation it is not necessary that g in (2.8)
(with ū replaced by ū0) satisfies g ≤ m.

To prove lower semicontinuity it therefore remains to show that ū0 does not vanish
identically. Arguing by contradiction, assume that ū0 ≡ 0 or, in other words, that u0 is
even in xi. Abusing notation we identify ρ0 with the element from L(E) sending u to u◦ρ0.
Note that ρ−1

0 = ρT = ρ0, where ρT
0 denotes the adjoint of ρ0. Consider the complementary

orthogonal projections

PV :=
1
2

(I + ρ0)

PW :=
1
2

(I − ρ0)

with images V and W . Here V is the subspace of functions even in xi and W is the
subspace of functions odd in xi.

Set Γ := ∇J . Since J is invariant with respect to ρ0, Γ is equivariant. Let X and Y
denote kernel and range of Γ′(u0). Note that X is finite-dimensional. It is easily seen that
u0 ∈ V implies that Γ′(u0) and ρ0 commute. Hence X and Y are invariant for ρ0. From
this it follows that PV , PW , PX and PY commute pairwise, where PX and PY denote the
orthogonal projections onto X and Y .

The implicit function theorem yields a local map h : X → Y at 0 such that

(2.10) y = h(x) if and only if PY Γ(u0 + x + y) = 0

for x ∈ X and y ∈ Y near 0. Moreover, h(0) = 0 and h′(0) = 0. Similarly, we look at the
restriction of J to V . The subspace V coincides with the space of fixpoints of ρ0. Hence
Γ(V ) ⊆ V . Using these properties we obtain a local map hV : X ∩ V → Y ∩ V at 0 such
that (2.10) holds with h replaced by hV if x ∈ X ∩ V and y ∈ Y ∩ V near 0. From this it
follows that h(x) = hV (x) for x ∈ X ∩ V near 0 and thus

(2.11) PW h(x) = 0 for x ∈ X ∩ V near 0.

Set vn := PXPV (un − u0) and wn := PXPW (un − u0), so

un = u0 + vn + wn + h(vn + wn) for large n.

Taking (2.11) into account, this and

h(vn + wn) = h(vn) +
∫ 1

0
h′(vn + swn)wn ds

yield ūn/2 = PW un = wn + o(‖wn‖). Recall that ūn 6= 0 since αi(un) = 0. Therefore there
exists w0 ∈ W ∩ X with ‖w0‖ = 1 such that ūn/‖ūn‖ → w0 as n → ∞, after passing to a
subsequence. Moreover, ūn > 0 on Ω0 implies that w0 ≥ 0. Since w0 6= 0 and w0 satisfies

−∆w0 + V w0 = f ′(u0)w0
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we obtain w0 > 0 on Ω0. Oddness of w0 in xi and Lemma 2.2 yield
∫

RN
u2

0∂
2
i V dx > 0,

contradicting assumption (I)c. This concludes the proof of Theorem 1.1.

3. Uniform Decay Estimates

In this section we use a different set of assumptions as in the preceding section since the
results are independent. It poses no additional difficulties to prove them in a less restrictive
setting. In particular we allow the nonlinearity to depend on x and therefore consider

(3.1) − ∆u + V (x)u = f(x, u), u ∈ H1(RN).

For V we assume:

(V1′) V is Hölder continuous.

(V2′) inf V (RN) > 0.

(V3′) V is bounded.

We set F (x, u) :=
∫ u

0 f(x, s) ds and assume:

(F1′) f is differentiable in u for almost every x, and ∂uf is a Carathéodory function.
f(x, u)/u, extended to u = 0 by the value 0, is Hölder continuous on subsets where
u is bounded, jointly in x and u.

(F2′) f(x, u) = o(|u|) as u → 0, uniformly in x.

(F3′) |∂uf(x, u)| ≤ a(1 + |u|p−2) for u ∈ R and x ∈ R
N , with some p ∈ (2, 2∗).

(F4′) ∂uf(x, u)u2 ≥ (θ − 1)f(x, u)u > 0 for u 6= 0 and x ∈ R
N , with some θ > 2.

(F5′) infx∈RN F (x, 1) > 0.

We define

m := min
{
inf V (RN ), 1

}
,(3.2)

M := max
{
sup V (RN), 1

}
,(3.3)

b1 := sup{ u0 ≥ 0 | ∀x ∈ R
N ∀u ∈ (0, u0] : f(x, u) ≤ mu/2 },(3.4)

b2 := inf{ u ≥ 0 | ∃x ∈ R
N : f(x, u) ≥ mu },(3.5)
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and

b3 = inf
x∈RN

F (x, 1) > 0.(3.6)

By the properties of V and f all of these constants are finite and positive. Note that f
satisfies the global Ambrosetti-Rabinowitz condition

(3.7) f(x, u)u ≥ θF (x, u) > 0 for u 6= 0 and x ∈ R
N .

Integrating this inequality with respect to u over [1, t] yields

(3.8) F (x, t) ≥ b3|t|θ for |t| ≥ 1 and x ∈ R
N .

In this setting the energy functional is defined on E as

J(u) :=
1
2

∫

RN
(|∇u|2 + V (x)u2) dx −

∫

RN
F (x, u) dx.

Again, critical points of J correspond to classical solutions of (3.1). We reuse the notation
from Section 1 with respect to sets of critical points of J , but we define c0 by

(3.9) c0 := inf
u∈E\{0}

u≥0

max
t>0

J(tu).

Note that 0 < c0 < ∞, that c0 ≤ inf J(K+) by (F4′), but that here c0 is not necessarily a
critical level, while in the x-periodic case with f odd in u this definition coincides with that
given in (1.2). It is not known under our present conditions whether (3.1) has a nontrivial
solution at all.

We adopt the following convention:

(∗)

All constants denoted by Ck and Dk, where k ∈ N, are positive and
depend only on m, M , an upper bound for the Hölder norm of V , the
data of f , and the extra dependencies given. Moreover, they can be
estimated explicitly.

The constants Ck retain their meaning in the whole paper, while the constants Dk retain
their meaning only within proofs.

The main purpose of this section is to prove the following more general version of The-
orem 1.2:

3.1 Theorem. Fix ε > 0. Then there are positive constants C1, C2, C3 and C4 that depend

on ε and conform to (∗), with the following property: Given any u ∈ K2c0−ε
+ denote by M

the set of local maximum points of u, and denote by x0 the center of mass of conv(M).
Then

(3.10) C3e−C1|x−x0| ≤ u(x)2 ≤ C4e−C2|x−x0|

for all x ∈ R
N .

12



We introduce the notation | · |q for the Lq(RN)-norm if q ∈ [1, ∞] and prepare the proof
of Theorem 3.1 with two technical lemmata:

3.2 Lemma. There are positive constants C5, C6, C7, C8, C9, and C10, C9 ≤ 1, that

conform to (∗) and satisfy

C5 ≤ c0 ≤ C6, ‖u‖ ≤ C7 and |u|∞ ≤ C8

if u ∈ K2c0
+ . Moreover,

(3.11)
u(x)
u(y)

≥ C9e−C10|x−y|

for u ∈ K2c0
+ and x, y ∈ R

N .

Proof. We start with exhibiting a lower bound for c0. Suppose that a nonnegative u ∈
E\{0} satisfies J(u) = maxt>0 J(tu). Then d

dt
|t=1J(tu) = 0 implies that

(3.12)
∫

RN
(|∇u|2 + V u2) dx =

∫

RN
f(x, u)u dx.

By (F2′) and (F3′) there is D1 such that

|f(x, u)| ≤ m

2
|u| + D1|u|p−1 x ∈ R

N , u ∈ R.

Therefore

‖u‖2 ≤ 2
m

∫

R

(
|∇u|2 + (V − m/2)u2

)
dx ≤ 2D1

m
|u|pp.

Using the Sobolev embedding H1(RN) ⊆ Lp(RN) we obtain D2 with

(3.13) ‖u‖ ≥ D2m
1/(p−2).

On the other hand it follows from (3.7) and (3.12) that

(3.14) J(u) ≥
(1

2
− 1

θ

) ∫

R

(
|∇u|2 + V u2

)
dx ≥ m

(1
2

− 1
θ

)
‖u‖2

if J(u) = max
t>0

J(tu).

Setting

C5 := mp/(p−2)D2
2

(1
2

− 1
θ

)
,

from (3.13) and (3.14) we obtain J(u) ≥ C5. The definition of c0 therefore yields c0 ≥ C5.
To find an upper bound for c0 define ϕ : RN → R by

ϕ(x) :=





1 − |x| |x| ≤ 1

0 otherwise,
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and denote

D3 :=
1
2

∫

RN
(|∇ϕ|2 + Mϕ2) dx and D4 := b3

∫

B1/2(0)
ϕθ dx.

Then F ≥ 0 implies that J(tϕ) ≤ 4D3 for t ∈ [0, 2]. For t ≥ 2 it follows from the definition
of b3 in (3.6), from ϕ ≥ 1/2 in B1/2(0), and from (3.8) that J(tϕ) ≤ D3t

2 − D4tθ. Taking
the definition of c0 in (3.9) into account we therefore set

C6 := max
{

4D3, max
t≥2

(D3t2 − D4tθ)
}

where C6 depends only on N , M , b3 and θ. Here we have also used that θ > 2.
In view of (3.14) the definition

(3.15) C7 :=

√
4θC6

m(θ − 2)

gives an upper bound for ‖u‖ if u ∈ K2c0
+ . Standard regularity estimates yield C8. To

compute C8 from C7 one could for example use the bootstrapping method outlined in [2,
Appendix B], applied to the stationary orbit u(t) ≡ u for the associated parabolic equation.
It is easy to see that C8 can be so chosen that it only depends on N , m, M , a, b1, b2, b3,
p and θ.

Finally, the existence of C9 and C10 such that (3.11) holds follows from the upper bound
C8 for |u|∞, Harnack’s inequality as stated in [13, Theorem 8.20], and from the remark
immediately following that theorem.

As is easy to see, (F4′) implies for u ∈ E\{0} that the map t 7→ J(tu) has a unique
positive critical point ξ(u), its maximum point on [0, ∞).

3.3 Lemma. If u ∈ E\{0} satisfies

(3.16) |J ′(u)u| ≤ θ − 2
θ − 1

· m

2
‖u‖2

then

(3.17) J(u) ≥ J(ξ(u)u) − 2|J ′(u)u|2
m(θ − 2)‖u‖2

.

Proof. Define g(t) := J(tu) for t ≥ 0. Then

g′(t) = t
∫

RN
(|∇u|2 + V u2) dx −

∫

RN
f(x, tu)u dx

14



and

(3.18)

g′′(t) =
∫

RN
(|∇u|2 + V u2) dx −

∫

RN
∂uf(x, tu)u2 dx

≤ θ − 1
t

g′(t) − (θ − 2)
∫

RN
(|∇u|2 + V u2) dx

≤ θ − 1
t

g′(t) − m(θ − 2)‖u‖2

=: h(t),

where we have used (F4′) and θ > 2.
Note that g′(t) ≤ 0 for t ≥ ξ(u). Hence (3.18) implies that g′′(t) ≤ −m(θ − 2)‖u‖2 for

all t ≥ ξ(u). This yields

(3.19) J ′(u)u = g′(1) =
∫ 1

ξ(u)
g′′(s) ds ≤ −m(θ − 2)‖u‖2(1 − ξ(u)) ≤ 0 if ξ(u) ≤ 1.

On the other hand, (3.18) and (3.16) imply

h(1) = (θ − 1)J ′(u)u − m(θ − 2)‖u‖2 ≤ −m(θ − 2)
2

‖u‖2 < 0.

Moreover, we have

h′(t) = −θ − 1
t2

g′(t) +
θ − 1

t
g′′(t) ≤ −m(θ − 1)(θ − 2)

t
‖u‖2 < 0.

Hence g′′(t) ≤ −m(θ − 2)‖u‖2/2 for all t ≥ 1, and by (3.19)

(3.20) J ′(u)u ≥
∫ ξ(u)

1

m(θ − 2)
2

‖u‖2 ds =
m(θ − 2)

2
‖u‖2(ξ(u) − 1) ≥ 0 if ξ(u) ≥ 1.

Combining (3.19) and (3.20) yields

(3.21) |ξ(u) − 1| ≤ 2|J ′(u)u|
m(θ − 2)‖u‖2

.

Observe that by what we have shown above g′′(t) < 0 for t between 1 and ξ(u). Since
g′(ξ(u)) = 0 it follows that |g′(t)| ≤ |g′(1)| = |J ′(u)u| for t between 1 and ξ(u). Observing
that J(u) − J(ξ(u)u) =

∫ ξ(u)
1 g′(t) dt, in conjunction with (3.21) we obtain (3.17).

Proof of Theorem 3.1. Fix some u ∈ K2c0−ε
+ and denote by M the set of local maximum

points of u (recall that u ∈ C2 by our assumptions on regularity). Then M 6= ∅ since
lim|x|→∞ u(x) = 0. Set

D1 := min

{
b1,

b2C9

2

}
.
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Equation (3.1) and the definition of b2 in (3.5) imply that

(3.22) u(x) ≥ b2 if x ∈ M,

while the definitions of b1 and D1 yield

f(x, u) ≤ m

2
u(x) if u(x) ≤ D1.

Denote
A := { x ∈ R

N | u(x) ≤ D1 } and Ω := R
N\A.

Clearly, A 6= ∅. Moreover, Ω ⊇ M 6= ∅ by (3.22) and since b2 > D1 (recall that C9 ≤ 1).
Denote by U the collection of connected components of Ω. Since Ω is open and bounded,
every U ∈ U is open, bounded and path connected. Our goal is to estimate the diameter
of Ω from above. This easily implies the growth bounds for u, as we will see at the end of
the proof.

First we estimate the number of connected components of Ω from above. Fix some
U ∈ U . Then u achieves its maximum on U in some x0 ∈ U , and by (3.22) and Lemma 3.2
U includes an open ball of radius

R :=
log 2
C10

with center x0. This follows from

u(x) ≥ u(x0)C9e−C10|x−x0| >
1
2

b2C9 ≥ D1

for |x − x0| < R. Since U was chosen arbitrarily from U , ‖u‖ ≤ C7 implies for #U , the
number of connected components of Ω, that #U|BR|D2

1 ≤ |u|22 ≤ C2
7 . Here |BR| denotes

the volume of the ball of radius R in R
N . Hence

(3.23) #U ≤ D2

with

D2 :=

⌊
C2

7

|BR|D2
1

⌋
.

Second, we give an upper bound for the diameter of a connected component of Ω. Fix
some U ∈ U again. For every x ∈ U it holds by Lemma 3.2 that u ≥ D1C9/2 on BR(x).
Suppose there exist x0, x1 ∈ U with |x0 − x1| ≥ 3R. Set

k :=

⌊
|x0 − x1|

3R

⌋
.

Then there exist x2, x3, . . . , xk ∈ U such that

(3.24) BR(xi) ∩ BR(xj) = ∅ if i 6= j, for i, j = 0, 1, 2, . . . , k.
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To see this, assume for simplicity that x0 = 0 and x1 = (x1
1, 0, 0, . . . , 0). If k ≥ 2, choose

xi from the intersection of the hyperplane { x ∈ R
N | x1 = 3R(i − 1) } with U , for

i = 2, 3, . . . , k. This intersection is not empty because U is (path-)connected.
It now follows from (3.24) that

(k + 1)|BR|
(

D1C9

2

)2

≤ |u|22 ≤ C2
7

and hence

|x0 − x1| ≤ (k + 1)3R ≤ 4C2
7

|BR|D2
1C2

9

3R.

With

D3 := 3R max

{
1,

4C2
7

|BR|D2
1C2

9

}

we obtain

(3.25) diam U ≤ D3 for all U ∈ U .

In the next step we give an upper bound for the distance of connected components of
Ω. We fix U ∈ U and some x0 ∈ U , so U ⊆ BD3(x0). We want to estimate the maximum
distance of BD3(x0) from Ω\U . Suppose therefore that

(3.26) Ω\U ⊆ R
N\BD3+2r+4(x0)

for some r ≥ 0. We first prove a decay estimate for u in the annular domain Ω′ :=
UD3+2r+4(x0)\BD3(x0) ⊆ A. By the definitions of A, D1, and b1 we have u ≤ D1 and
f(x, u)/u ≤ m/2 in Ω′.

Define µ1 to be the positive root of the equation

µ2 +
N − 1

D3
µ =

m

2

and set
v(x) := 2D1e−µ1(r+2) cosh

(
−µ1(|x − x0| − D3 − r − 2)

)
.

A straightforward calculation yields ∆v = c(x)v for x 6= x0 with

c(x) := µ2
1 − µ1(N − 1)

|x − x0| tanh
(
−µ1(|x − x0| − D3 − r − 2)

)
.

By the choice of µ1 we have that c(x) ≤ m/2 for all x ∈ Ω′. Hence u, v ≥ 0 implies

−∆v +
m

2
v ≥ −∆v + cv = 0 = −∆u +

(
V − f(x, u)

u

)
u ≥ −∆u +

m

2
u
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in Ω′. Since also v ≥ D1 ≥ u on ∂Ω′, as a straightforward calculation shows, the maximum
principle implies v ≥ u on Ω′. We therefore obtain:

(3.27) u ≤ 2D1e−µ1(r+2) cosh(2µ1) = D10e−µ1r on BD3+r+4(x0)\BD3+r(x0),

where we have set
D10 := 2D1e−2µ1 cosh(2µ1) = D1(1 + e−4µ1).

Set B̃r := BD3+r+3(x0)\BD3+r+1(x0). The bound ‖u‖ ≤ C7 and regularity theory imply
an a priori estimate for a global Hölder norm of u. Therefore (F1′) yields an a priori

estimate for a global Hölder norm of f(x, u)/u. If x ∈ ∂BD3+r+2(x0) then int B2(x) ⊆
BD3+r+4(x0)\BD3+r(x0), and hence u ≤ D10e−µ1r on int B2(x) by (3.27). Applying [13,
Corollary 6.3] with d = 1 and the base domain int B2(x) to the equation (−∆ + V −
f(x, u)/u)u = 0 yields D9 such that |∇u| ≤ D9e−µ1r on B1(x). Since the collection of balls
B1(x) with x ∈ ∂BD3+r+2(x0) covers B̃r we obtain

(3.28) |∇u| ≤ D9e−µ1r on B̃r.

Define a cutoff function ζ : R → [0, 1] by

ζ(t) :=





0 s ≤ 0,

s 0 ≤ s ≤ 1,

1 1 ≤ s.

Set

u1(x) := ζ(D3 + r + 2 − |x − x0|)u(x),

u2(x) := ζ(|x − x0| − D3 − r − 2)u(x).

Then u1, u2 ∈ E are continuous and

(3.29) |supp u1 ∩ supp u2| = 0.

Moreover, u1 = u in BD3+r+1(x0) and u2 = u in R
N\BD3+r+3(x0). As noted before there

exist x1 ∈ U ∩ M and x2 ∈ (Ω\U) ∩ M, so BR(x1) ⊆ U and BR(x2) ⊆ Ω\U . Setting
δ := |BR|1/2D1 we thus obtain ‖ui‖ ≥ δ for i = 1, 2.

Define ū := u1 + u2. Then ū = u in R
N\B̃r. It holds that

0 ≤ ū ≤ u

|u − ū|2, |u2 − ū2| ≤ u2

|∇u − ∇ū|2, | |∇u|2 − |∇ū|2| ≤ 2(|∇u|2 + u2).
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Observe that by (F3′)

|J(u) − J(ū)| ≤ 1
2

∫

B̃r

(| |∇u|2 − |∇ū|2| + M |u2 − ū2|) dx

+ 2a
∫

B̃r

(
|u|2
2

+
|u|p

p(p − 1)

)
dx.

Using (3.27), and (3.28) we may therefore choose a function g1 : R+
0 → R

+
0 that is strictly

decreasing, that satisfies g1(r) → 0 as r → ∞, that depends only on the parameters D9,
D10, µ1, M , a and p, and that satisfies

(3.30) |J(u) − J(ū)| ≤ g1(r).

We choose a function g2 with similar properties as g1 that satisfies

(3.31) ‖J ′(u) − J ′(ū)‖ ≤ g2(r)

instead of (3.30). Then J ′(u) = 0, (3.29) and (3.31) imply

(3.32) |J ′(ui)ui| = |J ′(ū)ui| ≤ g2(r)‖ui‖.

If for i = 1 or i = 2

|J ′(ui)ui| >
θ − 2
θ − 1

· m‖ui‖2

2
holds then by (3.32)

g2(r) ≥ θ − 2
θ − 1

· mδ

2
,

respectively

(3.33) r ≤ g−1
2

(
θ − 2
θ − 1

· mδ

2

)

since g2 is strictly decreasing in r.
Recall that by the definitions of c0 in (3.9) and ξ just before Lemma 3.3 any nonnegative

u ∈ E\{0} satisfies J(ξ(u)u) ≥ c0. If for i = 1, 2

|J ′(ui)ui| ≤ θ − 2
θ − 1

· m‖ui‖2

2

holds, this fact, Lemma 3.3, (3.30) and (3.32) imply

2c0 − ε ≥ J(u) ≥ J(ū) − g1(r)

= J(u1) + J(u2) − g1(r)

≥ J(ξ(u1)u1) + J(ξ(u2)u2) − g1(r) − 4
m(θ − 2)

g2(r)2

≥ 2c0 − g3(r),
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where we have set
g3(r) := g1(r) +

4
m(θ − 2)

g2(r)2.

Hence

(3.34) r ≤ g−1
3 (ε).

Since U ∈ U and x0 ∈ U were chosen arbitrarily, setting

(3.35) D6 := 4 + 2 max

(
{0} ∪ g−1

2

(
θ − 2
θ − 1

· mδ

2

)
∪ g−1

3 (ε)

)
,

and taking (3.26), (3.33), and (3.34) into account we obtain

(3.36) dist(BD3(x), Ω\U) ≤ D6 for every U ∈ U and every x ∈ U .

We can now conclude easily. Recall that by (3.25) every U ∈ U is contained in a ball
of diameter 2D3. Combining this fact with (3.23) and (3.36) we see that diam(Ω) ≤ D7,
with D7 := 2D2D3 + (D2 − 1)D6. Hence we obtain Ω ⊆ BD7(x) for all x ∈ Ω. Moreover,
if x0 is the center of mass of conv(M) then x0 ∈ BD7(x) for all x ∈ Ω. Therefore

(3.37) Ω ⊆ BD7(x0).

Pick any x1 ∈ M ⊆ Ω. By Lemma 3.2 and (3.37) every x ∈ R
N satisfies

u(x)2 ≥ (b2C9)2e−2C10|x−x1| ≥ (b2C9)2e−2C10|x0−x1|e−2C10|x−x0| ≥ C3e−C1|x−x0|

with C1 := 2C10 and C3 := (b2C9)2e−C1D7.
On the other hand, by (3.37) and the maximum principle it follows as in the proof of

(3.27) that u(x) ≤ D1 exp(−µ2(|x − x0| − D7)) for x ∈ R
N\BD7(x0), with µ2 :=

√
m/2 .

Recall that C8 ≥ b3 ≥ D1. Setting C4 := C2
8 exp(2µ2D7) and C2 := 2µ2 it follows that

u(x)2 ≤ C4 exp(−C2|x − x0|) for all x ∈ R
N .

3.4 Remark. A similar estimate can be proved for u ∈ K−. Instead of (F5′) one has to
assume that infx∈RN F (x, −1) > 0 and adapt the definitions of c0, b1, b2, and b3 accordingly.

3.5 Remark. Condition (F1′) could be changed by assuming Hölder continuity for f
instead of f(x, u)/u on sets where u is bounded, at the cost of more involved dependencies
in the constants (see the proof of Eq. (3.28)).

3.6 Remark. The mere existence of constants C1, C2, C3 and C4 such that (3.10) holds
for all u ∈ K2c0−ε

+ can be proved under weaker assumptions on f if f and V are periodic
in x. Namely, instead of (F1′) it suffices to assume that f is Hölder continuous on subsets
where u is bounded, assumption (F3′) can be replaced by

|f(x, u)| ≤ a(1 + |u|p−1) for u ∈ R and x ∈ R
N ,
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and (F4′) can be replaced by the global Ambrosetti-Rabinowitz condition

f(x, u)u ≥ θF (x, u) > 0 for u 6= 0 and x ∈ R
N .

Condition (F5′) is now a consequence of the assumptions above.
In this setting one defines c0 by (2.2), and recycles the definitions of b1, b2, and b3 from

(3.4), (3.5), and (3.6). Suppose that (un) is a sequence in K2c0−ε
+ , and suppose that (xn) is

a sequence in R
N such that each xn is a local maximum point for un. Assume that there is a

sequence (yn) in R
N such that u(yn) > b1 for each n and |xn−yn| → ∞ as n → ∞. We have

un(xn) ≥ b2 for all n. Note that Lemma 3.2 holds under the present weaker assumptions.
Using concentration compactness arguments (see [3, Proposition 2.5]) and (3.11) we reach
a contradiction, since the energy J(un) remains bounded by 2c0 −ε. Therefore there exists
R > 0 such that un(x) ≤ b1 and hence f(x, un(x))/un(x) ≤ m/2 if |x − xn| ≥ R. It is easy
to conclude from here. But note that this proof, being nonconstructive in nature, does not
yield explicit estimates of the constants.

Proof of Theorem 1.3. We fix the constants m := min W , M := max W , and an upper
bound for the Hölder norms of VT , which applies to VT as long as T ≥ I. Also fixing
ε := 2c0 − c Theorem 3.1 yields constants C1, C2, C3, and C4 with the following property:
If T ≥ I, and if u ∈ Kc

+ (with VT in place of V ), then, denoting by M the set of local
maximum points of u and by x0 the center of mass of conv(M), Eq. (3.10) holds. If in
addition u is even in xi for some i ∈ { 1, 2, . . . , N } then xi

0 = 0. It follows that (I)c0 is
satisfied for T large enough, since as T → ∞ all u ∈ Kc

+ (with VT in place of V ) that are
even in xi remain concentrated near { xi = 0 }, where ∂2

i VT is negative.

4. An Example in Dimension One

In this section we explain how to prove numerically the validity of (S)c0 for V as given in
Example 1.5 and for p = 20. More generally, we will consider p as a parameter. Recall the
1-dimensional problem

(4.1) − u′′ + V u = |u|p−2u, u ∈ H1(RN).

To facilitate the presentation we say that V satisfying (V1)–(V4) is p-admissible if (S)c0

holds for (4.1) with some p > 2.
Given M > 1 we specialize Theorem 1.3 to dimension one and to the specific function

W with period 1, defined by

min W = 1, W ′(0) = 0,

and

W ′′(x) =





−d, if x ∈ k + [−1/4, 1/4] for some k ∈ Z,

d, otherwise,
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where d := 16(M − 1). Then W ∈ C1(R,R), W ′ is Lipschitz continuous, W ′′ exists
classically and is negative in (−1/4, 1/4), max W = M , and W is even.

In this setting the constant τ0 = τ0(M, p) is, by definition, the only element of T0 from
Theorem 1.3. Hence, writing Vτ (x) := W (x/τ) for τ > 0 and x ∈ R, τ0 is such that

(4.2) − u′′ + Vτ (x)u = |u|p−2u, u ∈ H1(RN),

satisfies (I)c0, and therefore is p-admissible by Theorem 1.1, for τ ≥ τ0. As we will show
below, this minimal period τ0 can be optimized and estimated in an elementary manner
in terms of the parameters p and M , taking advantage of the simpler geometry in R (as
opposed to R

N with N ≥ 2).
At the end of this section we can construct the potential V of Example 1.5 by rescaling

a given Vτ0(M,20), where M is appropriately chosen.
This section should be read in conjunction with Section 3 since we just mention the

differences, and we also rely on notation introduced there. We define c0 by (3.9) and note
that it coincides with the definitions in (1.2) and (2.2).

4.1. Preliminary Estimates

Here we establish various bounds that were not calculated explicitly in Section 3 for the
general case. Note that in the present situation b1 = 2−1/(p−2), b2 = 1, and b3 = 1/p.

4.1.1. Sobolev Constants and Gradient Estimates

For an open interval Ω := (−l, l), 0 < l ≤ ∞, we have an embedding of H1(Ω) into the
space of bounded Lipschitz continuous functions on Ω. In a simple way we derive upper
bounds for the norms of the embeddings of H1(Ω) into Lq(Ω), q ∈ [2, ∞]. These techniques
are of course well known. We only provide the proofs here for the convenience of the reader,
and since we are interested in explicit estimates.

Consider u ∈ H1(Ω) and choose some x ∈ [0, l). Then for all y ∈ (−l, x] we have

u(x) =
∫ x

y
u′(s) ds + u(y)

and hence

(4.3) |u(x)| ≤ √
x − y |u′|2 + |u(y)|

by Hölder’s inequality. For z ∈ [−l, x] integrate (4.3) over (z, x) with respect to y and
obtain, after using Hölder’s inequality again and dividing by |x − z|, that

|u(x)| ≤
(

2
3

√
x − z |u′|2 +

1√
x − z

|u|2
)

≤
(

4
9

|x − z| +
1

|x − z|

)1/2

‖u‖.
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The last term in the above expression is minimized by choosing z in such a way that
|x − z| = min{ 3/2, l }. In the same way we treat the case of x ∈ (−l, 0]. Setting

CS(l, ∞) :=

(
4
9

min{ 3/2, l } +
1

min{ 3/2, l }

)1/2

we thus obtain |u|∞ ≤ CS(l, ∞)‖u‖ for all u ∈ H1(Ω). Note that CS(l, ∞) = CS(3/2, ∞)
for l ≥ 3/2. Therefore CS(∞, ∞) := CS(3/2, ∞) satisfies |u|∞ ≤ CS(∞, ∞)‖u‖ for all
u ∈ H1(R). We also define

CS(l, p) := CS(l, ∞)
p−2

p

for p ≥ 2. Then |u|p ≤ CS(l, p)‖u‖ for all u ∈ H1(Ω) by interpolation.
Now consider a positive solution u of (4.2). We want to give a pointwise estimate of u′

in [−l, l] (some l > 0) in terms of an upper bound on u(x) for x ∈ [−l, l], assuming that
u ≤ 1 on [−l, l]. Therefore fix x ∈ [−l, l] and choose y ∈ [−l, l] such that |x−y| = l. Recall
that u ∈ C2 since Vτ is differentiable. There is z between x and y such that

u′(x) =
u(y) − u(x)

y − x
− 1

2
u′′(z)(y − x).

It follows from (4.2) that

|u′(x)| ≤ 1
l
|u(x) − u(y)| +

M

2
|u(z)|l ≤ max

s∈[−l,l]
|u(s)|

(1
l

+
M

2
l
)

(here we have used that u ≥ 0). Since x was chosen arbitrarily from [−l, l] we obtain

(4.4) max
x∈[−l,l]

|u′(x)| ≤ max
s∈[−l,l]

|u(s)|
(1

l
+

M

2
l
)

if u solves (4.2), 0 ≤ u ≤ 1 on [−l, l].

4.1.2. Bounds on c0 and Their Consequences

To obtain a lower bound for c0 assume that u ∈ Kc0
+ and consider

‖u‖2 ≤
∫

R

(
|u′|2 + Vτ u2

)
dx =

∫

R

up dx ≤ CS(∞, p)p‖u‖p.

It follows that

‖u‖ ≥
(

1
CS(∞, p)

) p
p−2

=

√
3

2

by the definition of CS(∞, p). Therefore we obtain

c0 = J(u) =

(
1
2

− 1
p

) ∫

R

(
|u′|2 + Vτ u2

)
dx ≥

(
1
2

− 1
p

)
‖u‖2 ≥ 3

8
· p − 2

p
=: C5.
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We estimate c0 from above similarly as in Lemma 3.2. Being more careful though, we
try to get a better estimate by optimizing over a class of functions in H1(R). Namely,
fixing ϕ(x) = e−x2

we define the class {ϕσ}σ>0 by setting

ϕσ(x) := ϕ(σx)

for x ∈ R. Set

D1 :=
∫

R

|ϕ′|2 dx =
√

π

2
and D2(q) :=

∫

R

ϕq dx =
√

π

q

for q ≥ 2. A straightforward calculation yields

(4.5) max
t>0

J(tϕσ) =

(
a(σ)p

b(σ)2

) 1
p−2

(
2
p

) 2
p−2 p − 2

p

with

a(σ) :=
1
2

(
D1σ +

MD2(2)
σ

)

b(σ) :=
D2(p)

pσ
.

The expression on the right of (4.5) attains its minimum in

σmin :=

(
M(p − 2)D2(2)

(p + 2)D1

)1/2

=

√

M
p − 2
p + 2

and we obtain

a(σmin) =
1
2

√
πM

2

(√
p − 2
p + 2

+

√
p + 2
p − 2

)

b(σmin) =
1
p

√√√√ π(p + 2)
pM(p − 2)

.

Therefore we obtain a good upper bound C6 for c0 by setting

(4.6) C6 := min
σ>0

max
t>0

J(tϕσ) =

(
a(σmin)p

b(σmin)2

) 1
p−2

(
2
p

) 2
p−2 p − 2

p
.

As in (3.15) (here with J(u) ≤ c0) we have

‖u‖ ≤
(

2pC6

p − 2

)1/2

=: C7.

Last but not least, using the definition of CS(∞, ∞), we set

C8 := CS(∞, ∞)C7 =
2
3

√
3 C7.
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4.1.3. A Harnack Inequality

Our goal here is to provide an inequality as in (3.11). Suppose therefore that u ∈ K+ and
set v := u′/u. We claim that

(4.7) |v| ≤
√

M on R.

Once this claim is proved it is clear that we may set C9 = 1 and C10 =
√

M .
For large |x| the function u is the solution of a small perturbation of Hill’s Equation

(4.8) − w′′ + Vτ w = 0.

since u(x) → 0 as |x| → ∞. Suppose that w1 and w2 are solutions of (4.8) satisfying
w1(0) = w′

2(0) = 1 and w′
1(0) = w2(0) = 0. Since Vτ ≥ 0 the functions wi are convex where

wi ≥ 0. Hence w1 and w′
2 are increasing in [0, ∞) and consequently

w1(τ) + w′
2(τ) ≥ w1(0) + w′

2(0) = 2.

Applying standard Floquet theory, cf. [17, Sections 1.2 and 1.3], this inequality implies that
there are α > 0 and a positive τ -periodic function r(x) such that e−αxr(x) and eαxr(−x)
form a fundamental system for (4.8). These facts imply that w′/w is bounded for every
positive solution w of (4.8). From this one can show that also v = u′/u remains bounded
as |x| → ∞ by a perturbation argument (see eg. the discussion in [2, Appendix A.3]).

From Eq. (4.2) we obtain
v′ = Vτ − up−2 − v2.

Note that Vτ − up−2 ≤ M . Together with the boundedness of v(x) as |x| → ∞ these facts
imply (4.7).

4.2. Estimating Minimal Periods

In this subsection we present a recipe to numerically calculate τ0 > 0 such that for every
τ ≥ τ0 and every even u ∈ Kc0

+ , a solution of (4.2), it holds that

(4.9)
∫

[−τ/4,τ/4]
u2 dx ≥

∫

R\[−τ/4,τ/4]
u2 dx.

By the definition of Vτ this implies that
∫

R

u2V ′′
τ dx ≤ 0

for every such u, that is, (I)c0 holds and Vτ is p-admissible by Theorem 1.1.
Take D1 ∈ (0, 1) as a parameter to be optimized at the end. We will find τ1(D1) such

that (4.9) holds if τ ≥ τ1(D1), and we set

(4.10) τ0 := inf
D1∈(0,1)

τ1(D1).
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Therefore fix D1, τ > 0 and an even u ∈ Kc0
+ . We will calculate bounds for both sides of

the inequality in (4.9) in terms of τ . From these we will derive the minimum period τ1(D1)
such that (4.9) holds. Define

A := { x ∈ R
N | u(x) ≤ D1 } and Ω := R

N \A

as in the proof of Theorem 3.1, denote by M the set of local maximum points of u, and
by U the set of components of Ω.

As a first step we build g4 : R+ → R
+ such that if U ∈ U then ‖u‖2

U ≥ g4(diam U). To
this end fix U ∈ U . Since U ∩ M 6= ∅ we pick x0 ∈ U ∩ M and note that u(x0) ≥ 1.
Setting R := −(log D1)/C10, from (3.11) it follows that I := (x0 − R, x0 + R) ⊆ Ω, i.e.
diam U ≥ 2R. Suppose that U = (x1, x2). For a measurable subset A of R and q ∈ [1, ∞]
we denote by | · |q,A the Lq(A)-norm. It follows from (3.11) that

(4.11) |u|22,I ≥
∫ x0+R

x0−R
e−2C10|x−x0| dx =

1 − D2
1

C10
.

On the other hand, setting t = x2 − x1 we obtain

(4.12) |u|22,U\I ≥ (t − 2R)D2
1.

To estimate |u′|22,U , note that u(x1) = D1 because x1 lies on the boundary of Ω, and consider

1 − D1 ≤ u(x0) − u(x1) =
∫ x0

x1

u′(x) dx ≤
√

x0 − x1 |u′|2,(x1,x0).

Together with a similar inequality on (x0, x2) we obtain

|u′|22,(x1,x0) ≥ (1 − D1)2

x0 − x1

and |u′|22,(x0,x2) ≥ (1 − D1)2

x2 − x0

and hence

(4.13) |u′|22,U ≥ (1 − D1)2
( 1

x0 − x1
+

1
x2 − x0

)
≥ 4

t
(1 − D1)2.

In view of (4.11), (4.12) and (4.13) we define

(4.14) g4(t) :=
1 − D2

1

C10

+ (t − 2R)D2
1 +

4
t
(1 − D1)2 ≤ |u|22,U + |u′|22,U = ‖u‖2

U .

Second we estimate the number of connected components of Ω from above. The function
g4 defined above attains its minimum on [2R, ∞) at

(4.15) t0 :=
2(1 − D1)

D1

,
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with the value

g4(t0) =
1 − D2

1

C10
+ 2D2

1

(1 − D1

D1
− R

)
+ 2D1(1 − D1)

(it is easy to see that R ≤ (1 − D1)/D1, so t0 ≥ 2R). Since g4(t0) is the lowest possible
value of ‖u‖2

U , we set

D2 :=

⌊
C2

7

g4(t0)

⌋

and obtain
#U ≤ D2

as in (3.23).
In the next step we find an upper bound D6 for the length of an interval separating two

adjacent connected components of Ω. To prove exponential decay of u in A in terms of the
distance from Ω, note that u ≤ D1 and Vτ − |u|p−2 ≥ 1 − Dp−2

1 on A. Therefore set

µ :=
√

1 − Dp−2
1 .

Suppose that [x1, x2] is a bounded component of A, and that there is r ≥ 0 such that
t = x2 −x1 = 2(r +β) with β :=

√
2/M . Setting x0 := (x1 +x2)/2, the maximum principle

implies as in the proof of (3.27) that

u(x) ≤ 2D1e−µ(r+β) cosh(µ(x − x0))

for x ∈ [x1, x2]. With

B̃r := [x0 − β, x0 + β],

D10 := 2D1e−µβ cosh(µβ)

we obtain

(4.16) u(x) ≤ D10e−µr for x ∈ B̃r.

From (4.4) it follows that

(4.17) |u′(x)| ≤
√

2MD10e−µr for x ∈ B̃r.

Set

u1(x) := ζ

(
x0 − x

β

)
u(x),

u2(x) := ζ

(
x − x0

β

)
u(x),

ū := u1 + u2,
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where ζ is defined as in the proof of Theorem 3.1. Then

0 ≤ ū ≤ u

|u − ū|2, |u2 − ū2| ≤ u2

|u′ − ū′|2, | |u′|2 − |ū′|2| ≤ 2

(
|u′|2 +

u2

β2

)
= (2|u′|2 + Mu2).

Hence (4.16) and (4.17) imply

|J(u) − J(ū)| ≤ 1
2

∫

B̃r

(
| |u′|2 − |ū′|2| + V |u2 − ū2|

)
dx +

2
p

∫

B̃r

|u|p dx

≤ 6
√

2MD2
10e−2µr +

4
p

√
2

M
Dp

10e−pµr

=: g1(r).

Similarly, a straightforward calculation yields

‖J ′(u) − J ′(ū)‖ ≤ 25/4
√

3M3/4D10e−µr

+ 21+
3(p−1)

2p M− p−1
2p CS(β, p)Dp−1

10 e−(p−1)µr =: g2(r).

As before we set
g3(r) := g1(r) +

4
p − 2

g2(r)2.

Recall the definition of g4 in (4.14). We use δ :=
√

g4(t0) as a lower bound for ‖ui‖ (i = 1, 2)
and follow the argument leading up to the definition of D6 in (3.35). Here we replace ε
by c0 = 2c0 − c0 (since we are proving (I)c0), and in turn we replace c0 by the known a

priori lower bound C5 = 3(p − 2)/(8p) for c0, using that g−1
3 is monotone decreasing. We

therefore arrive at

x2 − x1 ≤ D6 if [x1, x2] is a bounded connected component of A,

where

D6 := 2β + 2 max

(
{0} ∪ g−1

2

(
δ(p − 2)
2(p − 1)

)
∪ g−1

3

(
3(p − 2)

8p

))
.

Instead of globally estimating diam U as in the proof of Theorem 3.1 we take a different
approach here, utilizing the simpler geometry in one dimension, and carefully retaining
accurate estimates. We have the upper bound D2 for #U . For our specific class of potentials
Vτ and for Z ∈ {1, 2, . . . , D2} we calculate τ2(D1, Z) such that (4.9) holds if τ ≥ τ2(D1, Z)
and #U = Z. Note that all estimates up to now were independent of τ , even though we
employed the periodicity of the potential Vτ in Section 4.1.3. We then take

(4.18) τ1(D1) := max
Z∈{1,2,...,D2}

τ2(D1, Z),
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so (4.9) is satisfied if τ ≥ τ1(D1), independently of #U .
Therefore, fix Z ∈ {1, 2, . . . , D2} for now, suppose that U = { U1, U2, . . . , UZ }, and set

ti := |Ui| = diam Ui. Then |Ω| =
∑Z

i=1 ti. To obtain an upper estimate for |U | note that

C2
7 ≥

Z∑

i=1

‖u‖2
Ui

≥
Z∑

i=1

g4(ti).

Using the properties of g4 it is elementary to show that the function (t1, t2, . . . , tZ) 7→∑Z
i=1 ti attains its maximum under the side conditions

Z∑

i=1

g4(ti) ≤ C2
7 and ∀i : ti ≥ 2R

in a point (t1, t2, . . . , tZ) with t0 ≤ t1 = t2 = · · · = tZ =: tmax and

Z∑

i=1

g4(ti) = Zg4(tmax) = C2
7

(recall that t0 is defined in (4.15) and that Zg4(t0) ≤ C2
7). Hence

tmax = (g4|[t0,∞))−1

(
C2

7

Z

)
and |Ω| ≤ Ztmax =: D11.

We therefore set D7 := D11 + (Z − 1)D6. Then Ω ⊆ [−D7/2, D7/2] because u is even.
Recall that |u|22,U ≥ (1 − D2

1)/C10 for U ∈ U by (4.11). Suppose that τ ≥ 2D7. Then

∫ τ/4

−τ/4
u2 dx ≥ Z(1 − D2

1)
C10

.

On the other hand,

u(x) ≤ D1e−µ(x−D7/2) for x ≥ D7

2
,

so ∫

R\[−τ/4,τ/4]
u2 dx ≤ 2

∫ ∞

τ/4
D2

1e−2µ(x−D7/2) dx =
D2

1

µ
e−µ(τ/2−D7).

To achieve (4.9) we therefore require that

Z(1 − D2
1)

C10
≥ D2

1

µ
e−µ(τ/2−D7)

respectively that

τ ≥ 2

(
D7 − 1

µ
log

(
µZ(1 − D2

1)
C10D2

1

))
.
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Figure 2: Isolines of σ0 for small values of p and M

We therefore set

τ2(D1, Z) := 2D7 + max

{
0,

2
µ

log

(
C10D2

1

µZ(1 − D2
1)

)}
.

Taking (4.18) and (4.10) into account the recipe for numerically calculating τ0 = τ0(M, p)
is complete.

4.1 Remark. The definition of C6 in (4.6) yields that C6 = C(p) · M
p+2

2(p−2) with some
positive constant C(p). Following the dependencies on large M throughout the estimates
above, for τ0 as defined in (4.10) we obtain that

(4.19) lim
M→∞

τ0

M
p+2

2(p−2) log M
exists for fixed p and is positive.

4.3. Numerical Justification of Example 1.5

To measure the “reasonability” of Vτ0 we introduce the ratio σ0(M, p) := τ0(M, p)/(M −1).
Since sufficiently large periods τ always make Vτ p-admissible, we strive to find not too
large M and p such that the corresponding σ0(M, p) is reasonably small. Evaluating the
recipe of the previous section numerically we present plots of isolines of the function σ0

in Figs. 2 and 3. Note that limM→∞ σ0(M, p) = ∞ if p ≤ 6 and limM→∞ σ0(M, p) = 0 if
p > 6. This can be explained by the asymptotic estimate in (4.19).
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Figure 3: Isolines of σ0 for large values of p and M

Now we fix M = 3 and p = 20. Numerically realizing the recipe of the previous subsection
yields approximately τ0 = 68.6 and σ0 = 34.3, calculated with roughly the choice D1 =
.5377.

We set

τ :=

⌈
τ0√

5

⌉√
5 ≥ τ0(M, p).

Then Vτ is p-admissible by the definition of τ0. Defining V (x) := 5Vτ (
√

5 x) equation (4.2)
is equivalent with

−v′′ + V (x)v = |v|p−2v, v ∈ H1(RN),

under the scaling
v(x) := 5

1
p−2 u(

√
5 x).

This new potential V is the one presented in Example 1.5. It has the data min V =
5, max V = 15, and period τ/

√
5 = 31. The rescaling leaves p-admissibility invariant

(although it changes c0), that is, also V is p-admissible.

4.2 Remark. The actual calculation of τ0(M, p) and σ0(M, p) for different values of M
and p presented here is realized as a program written in the language C, using the GNU
compiler gcc and the mathematical library GNU gsl. For the inversion of the functions g2

and g3 we use the root finding algorithm gsl_root_fdfsolver_steffenson, and for minimizing
τ1 over D1 we use the minimizing algorithm gsl_min_fminimizer_brent of the gsl library.
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