On a Periodic Schr odinger Equation
with Nonlocal Superlinear Part

Nils Ackermann

Abstract

We consider the Choquard-Pekar equation
—Au+Vu= W=xu>u ue HY(R®

and focus on the case of periodic potentfal For a large class of even functioki¢ we

show existence and multiplicity of solutions. Essentially the conditions are that O is not
in the spectrum of the linear pa#A + V and thatw does not change sign. Our results
carry over to more general nonlinear terms in arbitrary space dimehkr?.

1. Introduction
We consider the problem
(P) —AU+Vu= W=xudu ue HYR®

whereV andW are real functions o3, W is even, andi assumes real values. Here, for two
functionsu, v onR3, u x v denotes convolution af andv. Let us define

U(U) = %fRs(W* u?)u?dx

for u € HY(R3). Finding weak solutions of (P) is equivalent to finding critical points of the
energy functional

O (U) = %/Rg(|Vu|2+Vu2)dX— W (U)

defined onH1(RR3).

This type of problem is often referred to &hoquard-Pekar equatiowhenW > 0. It
comes up as an approximation to Hartree-Fock theory of a Plasma or in the Hartree theory
of bosonic systems (cf. [3, 10, 11]). The cade< 0 appears as Hartree equatiorfor the
Helium atom.



Associated with (P) is the eigenvalue problem
(EP) —AU+VU— (W=xUudHu=21u ue HYXR®

that is usually calle€Choquard equationf W > 0. Here one is interested in solutions with
prescribed.2-norm |u|§ = M, X € R being a free parameter. Solutions are the critical points
of the energy® restricted to thd_2-sphere

Svw={ueH®R®}||uUs5=M}.

For physical reasons let us call the exterior potentialand W the potential of particle
interaction In the sequel we speak of tmadial case ifV andW are radial functions and
existence of radial solutions is investigated. Peeiodiccase refers t&% being periodic and
nonconstant. Moreover, we assume for the whole discussioMtitiies not change sign.

Both problems have been investigated in the nonperiodic case by many authors, cf. [6,13—
15,18, 19, 21, 25, 27] and the references therein. Here relative compactness of Palais-Smale
(PS) sequences df or of the restriction ofd to Sy is achieved by exploiting radial symmetry
and Strauss’ Lemma [24, 28], or the fact that the spectruin ef — A + V is discrete at the
bottom.

In contrast, the compactness issue in the periodic case is much more difficult to handle
due to the invariance of (P) and (EP) under the action of the noncompact Gfoirmuced
by translation by integer values in the coordinate directions. Minimizer&fover Sy, have
been constructed in the periodic case in [2, 8]. Additional difficulties are encountered when
considering excited states, i.e. solutions of (EP) at higher energy levels, or solutions of (EP)
with A in a gap of the spectrum af.

Even though problem (EP) seems to be more relevant in physics, we concentrate on prob-
lem (P). Our assumptions are thatis periodic and thatV does not change sign. We believe
that the techniques we develop will be useful in studying (EP) as well.

To summarize our results, let us introduce the following notion: Two elementse
H1(R3) are calledgeometrically distincif u is not contained in the orbit of under the
action ofZN. The elements of a subset ' (R3) are called geometrically distinct if they are
pairwise geometrically distinct.

In the case of periodi¥ > 0 (the positive definite case) witW > 0, the existence of
onenontrivial solution is relatively easy to prove. One can obtain a (PS)-sequence with the
Mountain Pass Theorem. Invariance®fvith respect to the action &N and weak sequential
continuity of ®’ then yield existence. We prove existencéndihitely many geometrically dis-
tinct solutions for (P) using a theorem of Bartsch and Ding. A multiplicity result for periodic
Schiddinger equations was known before only fecal nonlinear terms, and it was achieved
by a multibump construction in [9]. The method of proof used in the latter reference does not
apply to the nonlocal problem (P).

The main novelty in our proof is a lemma about decompositio® afong (PS)-sequences
(cf. Lemma 4.5 below). To show this we prove a variant of Brezis-Lieb’s Lemma that should
be of independent interest since little regularity is assumed. Results about decomposition were
known before in this generality only for local right hand sides in (P), see [9] for example.



Nevertheless, partial results about decomposition for nonlocal functionals are already present
in[7,8].

Now we turn to the case of a periodic exterior poteniahat changes sign. Here it may
happen that the Sobdinger operatot., which has purely continuous spectrum that consists
of a union of closed intervals, has essential spectrum below 0. As a consequence the quadratic
part of @ is strongly indefinite and one needs subtle arguments to construct (PS)-sequences. In
contrast to the positive definite case, mere existencmesolution is hard to prove. This was
first achived in [7], assuming that O is in a gap of the spectrurh ahd thatW(x) = 1/|x|.
The proof makes substantial use of the specific forn&ofin fact, consider the symmetric
bilinear form sending functions, v to

1
(1.2) I (u,v) = /Rs /R3 X y|u(y)v(x)dydx.

Since the Fourier transform of [iX| is known to be positivel, is positive definite on an appro-
priate function space. From this it follows thatis convex, a fact that lies at the heart of the
proof in [7]. Moreover, positive definiteness bis used there to show boundedness of (PS)-
sequences. The proof extends to more gendtrdiat have nonnegative Fourier transform, but
no general criterion is known to decide whether this is the case for a particular chalée of

For physical reasons it is desirable to treat potentfdlsvithout being restricted by the
assumption on the Fourier transformWf Indeed, in work of Fohlich, Tsai and Yau [10, 11]
on the Hartree equation for the thermodynamic limit of systems of non-relativistic bosons, the
authors propose to model particle interaction with a poteMtdhat behaves as

1 C
(1.2) W(X) |6 + ™
for |x| large (see also the discussion in [3]). Here the first term describes van der Waals,
the second gravitational attraction between atoms. Near 0 this function must be modified
in an appropriate way to be able to work in a variational setting. It is not at all clear how
to do this modification such that the Fourier transformV¥fis nonnegative. Therefore we
take a different approach to show existence of solutions to (P) in the periodic and indefinite
case, applying generalized linking theorems of Kryszewski-Szulkin and Bartsch-Ding. No
convexity of W is required, and we prove boundedness of (PS)-sequences by using a Cauchy-
Schwarz type inequality for the bilinear form associated Withas in (1.1), see condition
(W3) below. In [1] we give conditions oV that imply (W5), allowing for a lot of freedom in
choosing the regularization &Y described above. Hence we prove the existence of infinitely
many geometrically distinct solutions also in this case.

Our method of proof carries over to arbitrary space dimendior 2, replacingu? by
f(u) andu by f’(u) on the right hand side of (P), with suitable growth restrictionsfon
Moreover, no radial symmetry & is assumed, and we treat the case®/of 0 andW < 0,

i.e. attractive and repulsive particle interaction.

The organization of the paper is as follows: The next section contains a precise formulation
of our results and a discussion of the conditions/drand f. Section 3 deals with mapping
properties and regularity oF. It is split into two subsections for simplicity to account for the
possibility of W and f being sums of functions with different growth rates. Finally in Sect. 4
we show how to apply the abstract critical point theorems in this setting.




1.1. General notation

We setE = HY(RN), E* = H-L(RN) (the dual space dE). Denote byju||g the standard
norm foru € E. For any measure spaseandu € LP(Q) let |u|p o be the corresponding
norm, and sefulp = [up rN-

If X is a metric spaceA is a point or a subset of, andp > 0, then we set

U,(A, X) ={x e X|distx(x, A) < p}
B, (A, X) ={x e X|distx(x, A) < p}
S, (A, X) ={xe X|distx(Xx, A)=p}.

When there is no confusion possible we sometimes omiXifteependency. IfX, ||-|)) is a
normed vector space amd= 0, we often writeU , X instead olU, (0, X), and so forth.

Acknowledgements.The author wishes to thank A. Pankov for suggesting the nonlocal prob-
lem, and for many helpful discussions concerning [10, 11] and [23]. Moreover the author
thanks T. Bartsch for communicating the theorem used to obtain the multiplicity result.

2. Main Results

To be more explicit, consider the following problems:

(P}) —Au+Vu= Ws=x fu)f'(u  ueH®RNY
and
(P_) —AU+Vu=—-W=x fu)f'u ueH®RN).

We define as usual the critical Sobolev exponent20co for N = 2 and 2 = 2N/(N — 2)
for N > 3 and consider the following conditions:

(V1) V € L®°@®RN, R), andV is 1-periodic inx; fori = 1,2, ..., N.
(V3) o(=A+V) C (0, ).
(V3) 0¢ o(—A + V) ando(—A + V) N (=00, 0) # 2.

(W1) There are 1< rq{ < r» < oo such thatw e L"*(RN) + L"2(RN), andW is an even
function.

(W2) W > 0, and on a neighborhood of 0 we hae> 0.

(W3) There isC > 0 such that for all nonnegative v € L:_(RN)

loc

(2.1) /(W*ga)wdx5C\// (W % @) dx /(W*xp)wdx.
RN RN RN



(F) f e CYR,R), f(0) =0, and there ar€ > 0 andpy, pp > 1with2—1/r> < py <
p2 < (2—1/r1)2*/2 such that for alu € R

/(W] < C(JulPr1 4 jujPety |

(F2) Thereis® > 2 such that for alu € R \ {0}

2f'(wu>06fu) >0.

(F3) f is an even function.
We can now state for the positive definite case

2.1 Theorem.If (V1), (V%), (W1), (W2), (F1) and(F>) are satisfied, the(P..) has a nontrivial
weak solution. ProblenfP_) admits no nontrivial solution. If additionallyF3) holds, then
there are infinitely many geometrically distinct weak solutiongRr).

For the strongly indefinite case we have

2.2 Theorem.If (V1), (V%), (W1), (W2), (W3), (F1) and (F,) are satisfied, then botf,) and
(P-) have a nontrivial weak solution. If additional(¥#3) holds, then there are infinitely many
geometrically distinct weak solutions for both of these problems.

Some comments on the conditions given above are in order. Firsh fer 3 we have
2* = 6, so that for any 1< r; < r, < oo and for f (u) = u? (F1)—(Fs) are satisfied with
p1 = p2 = 2 andd = 4. Therefore our results apply to the special case of (P).

If ri < N/4 we must require thab < ri(N — 2)/(N — 4rq) for (F1) to be meaningful. A
general model forf is the functionu|P: + |u|P2 with suitable exponentp; and p,. It satisfies
all requirements (using = 2p1). To see that the condition gm, p> is quite natural, suppose
thatN > 3, W € L' for somer € [1, o] and f (u) = |u|P for somep > 0. By Young’s
theorem on convolutions

/ (W% f(u)) f(u)dx
RN

is well defined iff (u) € LS for s > 1 defined by

-+ -=2.
rs

Sinceu € HY(RN) we must therefore require thap € [2, 2*] and hence

2 1 2% 2*( 1)
—=2——-<ps—=—=\2—-).
S r S 2 r

A

Moreover, for the concentration compactness arguments to work, here we need strict inequal-
ities. For the same reason we need oo, while in the radial case = oo is allowed. In that
case compactness is achieved by a different means, as mentioned in the introduction.



To state criteria for checking (¥, we introduce some more quantities. For any nonempty
X c RN let «(X) denote the least positive integersuch that there is a closed convex set
A C X of dimensionN, A being symmetric (i.e— A = A), with the property thaX can be
covered bym translates ofA. If X = @ puta(X) = 0. If W is a nonnegative Borel function
onRN put X(t) = {x € RN | W(x) >t} fort > 0. The results in [1] yield thatV satisfies
(W3) if

(2.2) lim supx (X (1)) + lim supa (X (t)) < oo .
t—0 t—>o0

In that paper we also give examples that demonstrate that the cl&¥s>0f0 with (W3) is
larger than the class &V > 0 with nonnegative Fourier transform. In particudf,need not
be radially symmetric.

There is a simpler criterion ¥ (x) = h(p(x)) for some seminornp on RN and some
nonnegative Borel functioh on [0, co). For anyY C [0, oo) putA(Y) = supt > 0] [0,t] <
Y} and

0 Y=0
BY)= {00 AY) = —ocoandY # @
supY)/A(Y) otherwise.

Here we seto/a = oo if a > 0, andoo/oo = 1. Now putY (t) = {s € [0, 0) | h(s) >t}
fort > 0. By [1] W satisfies (W) if

(2.3) limsupB(Y(t)) + limsupB(Y(t)) < co .
t—0 t—o0
The last statement applies in particular to nonnegative radial decreasing funttighs
case was also studied in [20]). Paf as in (1.2) we can thus use a simple regularization near
0 as was mentioned in the introduction.
It is clear that any nontrivial even functiol > 0 that satisfies either (2.2) or (2.3) is
positive on a neighborhood of 0, so that{)tolds.

3. Regularity Properties of the Nonlinearity

Here we collect properties of the superquadratic pakb ofThroughout this section we will
assume (W) and (F). Instead of dealing directly with the different exponents», p1, p2 it
seems simpler to first consider the case of just two expomeantsl p. This is justified by the
splitting of W = W; +W5 into a sum of functions belonging td? respectivelyL"2. Similarly

f can be split: Choose a functigne C*°(R, R) such that (t) = 0 for |t| > 2, ¢(t) = 1 for
It| < 1and¢(t) € [0, 1] for all t. Then set

f1(u) :f c@) /) dt and fo=1f— f1.
0

Clearly we have

(3.1) |f/w] <CluP*™* and  |fyu)| < CJuP?



whereC only depends orf . Now

/ (W% f(u)) f(udx
RN

can be written as a sum of integrals of the form

f (U % g(uph(u) dx ,
RN

whereU stands foW; or W,, andg, h each stand for eithef, or f5.

3.1. The Simple Case

In this subsection we assurtke € L' (RN) for somer e [1, 00), g, h € CY(R, R), g(0) =
h(0) = 0, and that there exigi, g > 1 and a constar@ > 0 such that

lgWwl<CluPt and ()| <Cluft,
Moreover, fors = 2r /(2r — 1) we assumeap, sq € [2, 2%).

3.1 Lemma. Let S be the conjugate exponent for s, lett|[s, co), and letu be given by
1/s' + 1/t = 1/u. Then the bilinear map £x L' — L#, sending(u, v) to (U * u)v, is well
defined and continuous, with

|(U xwvl, < [U s ulgfvly < [Ulr|uls|vlt .

If (up) € LS and(v,) € L' are bounded and either,u— u in LSandv, — vin L! _or

loc
Un — uin L} .andvy, — vin LY, then(U x up)vn — (U xu)vin L*,

Proof. If u € LS andv € L!, by Young's Convolution Theorefd x u is in LS since ¥r +
1/s=1+1/s,and
U *xulg < [U]r|uls .
Fromt > s we obtainu > 1. Holder's inequality then yields the continuity of the bilinear
map(u, v) — (U x u)v.
Now let (un) and(vn) be given as in the statement of this lemma. In the casaithat u
in LS we can assuma, — 0in L! _ and, sincdvy,) is bounded, it suffices to show that

loc!
(3.2) U xuwwvy, >0 in L.
Lete > 0. Sinces’ < oo there isR > 0 such that

U x u|S’,RN\BR <e€.

We have
/ (U *u)vnl“dx=/ [(U *u)vn|“dx+/ (U % u)vp|* dx
RN Br RN\BR
< U x ulglvnlf's, + U * Ul oy, g lonlt
< Cilunlg g, + Cog” .



Lettingn — oo and there — 0 (3.2) follows.
In the case that, — v in L!, again we can assume that — 0 in L,SOC, and it suffices to
show

(3.3) (U x*upv—0 in L*
sinceU x Uy, is bounded ir_S. We claim that

(3.4) Uxu,— 0  inLS

loc*

Fix Ry > 0. For anye > 0 there isR, > 0 such that

|U|r,]RN\BR2 =¢.

PutU; = XBRZU andU; = U — U; (hereXBR2 denotes the characteristic function Bg,).
We have

s
U1 % Unl3 g, sf (/ |U1(X—y)un(y)|dy> dx
! Br, \JRN

s/
=/ (/ |U1(X—Y)Un(Y)|dY) dx
Br; \YBRr;+R,

s s
< |U1ly |Un|s,|3RlJrR2 .

The last inequality follows from [22, Thm. 3.1], a generalized form of Young’s Theorem on
convolutions. It follows that

|U * Unls',Br, < [U1* Unls,Bg, + U2 % Unls,Bg
< U1l |Un|s,BRl+R2 + |U2]r [Unls
= |U1|r|l«|n|s,BRl+R2 +Ce.

Lettingn — oo and thens — 0 we have proved (3.4) sind&; was arbitrary. Now (3.3)
follows from (3.4) as for the first case. O

The following is a variant of Brezis-Lieb’s lemma, as already mentioned in the introduc-
tion.

3.2 Lemma. Suppose thaty— v in E. Then, after extraction of a subsequence, there is a
sequencév,) € E withvy, — v in E, such that forany & 1, u > Owith tu € [2, 2*) and
any continuous f R — R with

| ()| < Clu”

for some C> 0 we have

f(up) — f(up—vn) = f(v) in LY.



Proof. Define functiongQ: [0, o0) — [0, co) by
Qn(R):/ (IVun|? + u2) dx..
Br

Then theQ, are uniformly bounded and nondecreasing. There is a subsequence converging
almost everywhere to a bounded nondecreasing fun€@idof. [16]). It is easy, extracting
another subsequence, to build a sequeRg¢e> oo such that for ang > 0 there isR > 0,
arbitrarily large, with

limsup(Qn(Rn) — Qn(R)) < e

n—oo

or, stated differently,

(3.5) lim sup (IVupl? +ud)dx <.

n—oo JBRr,\Br

Here all ballsB are taken to have center at 0. Fix a smooth funciiofD, co) — [0, 1] with
n(t) = 1for|t| < 1andn(t) = 0for|t| > 2. Putun(X) = n(2|x|/Rn)v(x) for x € RN and
neN.

Given f as in the statement of this lemma, fix> 0 and choosd&rk > 0 such that (3.5)
holds and such that

/ (Vo2 +v¥)dx <e.
RN\Br

Now u, — v in L% (BRr) by the compactness of Sobolev embeddings, so that by continuity
of the Nemyckii operator induced bfy on L'** we have

n—oo

lim / | f(Un) — f(Un—vn) — f(vp)l dx
Br
= lim / | f(un) — f(up—v) — f(v)|'dx=0.
n—oo BR

As n — oo there is a uniform constant for the continuous embeddiigeBr, \ Br) —
LY (BR, \ Br). It follows that

lim Sup|Un|tu,BRn\BR = C\/E

n—o0

lim suplvn|t.. B, \Br < V]t rN\Br < CVE -
n—o0



From this we obtain
limsup [ |f(un) — f(un—vn) — f(un)|tdx
n—-oo JRN

= lim sup | f(un) — f(un—vn) — f(un)|tdx
n—oo JBg,\Br

< Climsup (Junl* 4 [un — vnl* + |vpl*)' dx
n—oo JBr,\Br

. t
= Climsup||un|* + [Un — val* + [vnl"|;

n—o0

; t
< Clim 5Up(|un|#u + [un — Un|ﬁL + |Un|ﬁ,¢)
n—oo

< Climsup2e"/2 + (Unley + lvnlt)™)!
n—oo

< CelH/2

Here theL'* and L' norms in rows 2—4 counted from the bottom are taken with respect to
Br, \ Br, and we have used thgt > 1 andt > 1. Lettinge tend to O we find that

f(un) — fUn—wvp) — f(un) >0 inLt,
By noting thatv, — v in E and thusf (vy) — f (v) in L! we finish the proof. O

3.3 Remark. The preceding lemma can easily be extended to the case of an open subset
Q < RN. Here all is needed is th& N Br(0) satisfies a uniform cone condition for large

R, so that we have uniform constants from the Sobolev embeddings. Also the cdse of
depending ox € RN can be treated with the same proof.

ConsiderF: E — RandG: E — E* given by
F(u) =f (U x g(uw)h(u) dx
RN
G(w([v] =f (U * g(uph'(uyvdx
RN
foru,v € E.

3.4 Lemma. The maps F and G are well defined and continuous. Far @ E we have

IFW < Ul ulBluld,
IGW)lles < ClUr lulBluidg? .

G is weakly sequentially continuous. i v~ v in E there is(after extraction of a subse-
guencéa sequence, — v in E, independent of g and h, such that

F(Un) — F(Un —vn) — F(v) in R
G(up) — G(up — vp) — G(v) in E*.

10



Proof. We have continuous Nemyckii operatars® — LS, LS9 — LS, andLS9 — LS¥@-1
induced byg, h, andh’ respectively. Thus the inequality fér follows from Lemma 3.1 with
t = sandu = 1. Continuity of F is then a consequence of continuous Sobolev embeddings
E — LSPandE — LS9 The inequality for and continuity o follows from Lemma 3.1
witht = sg/(q — 1) andu = (sq)’ (the conjugate exponent fe), and from the continuous
embedding.-®" — E*,

If un — v in E, thenu, — v in L;® and inLp,, by the compactness of Sobolev embed-
dings. Thus

g(un) — g(v) in Lo
(3.6) h(un) — h(v) in Lj.
W' (un) — h'(v) in L/ @Y

and these sequences are bounded. Clearly (as in the proof of Lemma 3.1) for any
we haveh’(up)w — h'(v)w in LS, so that again by Lemma 3.1 with= sandu = 1
G(up)[w] — G(v)[w] in R. ThereforeG is weakly sequentially continuous.

By Lemma 3.2 we can, for a subsequencéwy), build vy, independent of andh, such
thatvy, — vin E,up, — vy, — 0in E, and (as above)

g(Un—wvn) > 0 in Ly,
h(uy —vn) - 0 inLy,
h'(un —vn) — 0 in L3¥/(@-D
g(un) — g(un —vn) = g(v) in LS
h(un) — h(up — va) — h() in L®
h'(un) — b (Up — vn) = h(v) in LS¥@-1
Using this, Lemma 3.1, (3.6), and bilinearity, the last two claims follow easily. O

3.2. The Combined Case

Let us denote 1
Y(u) = 5/ (W% f(u))f(u)dx
]RN

for u € E. We consider the splitting dV and f discussed above. This yields a splittinglof
into a sum of at most six terms. We set= 2r; /(2r; — 1) fori = 1, 2. From (k) it follows
that

(3.7) S pj € (2,29
fori, j € {1, 2}, so that we can apply the results of Section 3.1.

3.5 Lemma. ¥ is a C'-functional where¥ and ¥’ map bounded sets into bounded sets.
¥ is weakly sequentially lower semicontinuous akidis weakly sequentially continuous. If

11



un — v in E, there existgafter extraction of a subsequena@esequence, — v in E such
that

W (Up) — Y(Up —vp) — ¥(v) in R
W' (up) — ¥ (Un — vp) = ¥'(v) in E*.

Proof. By Lemma 3.4V is well defined and continuous. Lat — uin E. We can assume
(after extraction of a subsequence) thigt — u pointwise a.e. Sinc&V, f > 0 Fatou’s
Lemma vyields

Y(u) = / / Iim W —y) fun(y)) f(up(x))dydx < liminf (up) .
RN RN n—o0 n—oo

ThusW is weakly sequentially lower semicontinuous.
Consider the ma: E — E* given by

GWw[v] = /RN(W* f(u) f'(uyvdx

for u,v € E. G is well defined, continuous and weakly sequentially continuous by
Lemma 3.4. We show that far, h € E

1
(3.8) Y(u+h) — ¥ =/ G(u+sh[h]ds.
0

Clearly from this and the continuity d& it follows that ¥ is differentiable everywhere and
¥’ = G. To show (3.8) recall thatV is even. We calculate

1
2[ G(u+sh[h]ds
0

1
zzf / f [Wex = y) fuey) +shiy
0 RN JRN

x f/(ux) + sh(x))h(x)] dydxds

1
= [, [ woe=y) [ £+ shypho) f oo + shoo)
RN JRN 0
+ Fu(y) + shy) £ueo + shooph) | ds dy dx
= [, [, woc= [ fu) + hop fueo + hoo)
RN JRN

— f(uy) f (ue) | dy dx
=2(VUu+h —ww).

The integrand in the second row is easily seen to belifio, 1] x RN x RN) by using the
splitting of W and f, and the estimates in Section 3.1. This allows us to change the order of
integration and (3.8) is proved. The remaining propertied afe clear from Lemma 3.4.0J

12



3.6 Lemma. If (W5) and(F») hold, then for all ue E \ {0} we have
v (Wfu] > 0¥(u) > 0.
If in addition (W3) holds, then for all ue E we have
W' Wller < CH/Y' WUl + W' Wlu)) .
Proof. From (F,) andW, f > 0 it follows thatW'(u)[u] > 6w (u) forallu € E. If u # 0
then also¥l (u) > 0 sinceW > 0 on a neighborhood of 0.

For the proof of the second assertion consider again the splittiig-eff; + f,. Let p}
and p, be the conjugate exponents for and p respectively. From (3.1) we obtain

| f1 (WP < Cf'(uu
| fou)[P2 < Cf'(uyu.

Using this, (R), (Ws), and Hlder’s inequality we can compute for anyv € E
/ (W f ()| f{(u)v|dx
RN

< (/(W* f ()| f1’<u>|'°’1> ’

< C(/(W* f(u))f/(u)u) P

< C(/(W* f(u))f’(u)u) P

|~
U‘,_\

1

=

([(W* f(u)>|v|p1)
(f<W* f<u>>|v|p1)
(/<W* f(u))f(u))z'%l

x </<W*|v|pl>|v|p1)
(/(W* f(u))f/(u)u>21p1

x (/(W*|v|pl>|v|pl)

and a similar estimate fof, in place of f1. This, together with

[N

H\
=l

R

N|
[N

P1

P

< C(f(W* f(u))f/(u)u) P

N
[

P1

L

< COU'WUDH P u)e

W (W[v]| < fRN(W* f(U))Ifl’(U)vIdX+/RN(W* f ()| fy(uyv|dx

and ¥/ p/ +1/(2pi) € (1/2,1) fori = 1, 2 yields the desired inequality. O
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4. Abstract Critical Point Theory

In this section we assume () (W1), (W>), (F1) and (R) throughout. We also assume that
O¢o(—A+V).
By Lemma 3.5 the functional

d(U) = %fRN(quJrvUZ)dx— W (u)

is of classC!. Weak solutions of (P) correspond to critical points @b. We have a splitting
E = E~ @ E* with orthogonal projection®~ and P* corresponding to the decomposition
of o (—A 4+ V) in the negative and positive part. Let us define a new nipthon E by setting

||u+||2=f IVuT|? + VIuT|2dx

RN

||u—||2=—/ VU™ |2 + V|u~|?dx
RN

whereu™ = P*u. Since 0¢ o(—A + V) the normg|-|| and||-| g are equivalent. The norm
||| is induced by a scalar produgt -), and the projection®* are orthogonal with respect to
this new scalar product. For these statements see for example [26]. Note trﬂgthb(ld’s we
haveE~ = {0} and||ju™| = |lu|. Let]-| also denote the induced norm &?%. Now we can
write

1
¢w>=§mww?—w—ﬁy—wwy

4.1. The Geometry of @
4.1 Lemma. There isp > 0 such thatnf ®(S,E™) > 0.

Proof. Suppose that € E* with || z|| < 1. Using Lemma 3.4 we see that
1 1
®(@) = Slz|* - ¥(@ = S|zl - Cljz|*™

where 201 > 2, and the claim follows if we choogesmall enough. O

4.2 Lemma. Let Z be a finite dimensional subspace of. Bhen® (u) — —oo as|ju|| — oo
inE- & Z.

Proof. For anyu € E with |lu|| > 1 and for anyt > O putg(t) = W(tu/|u|) > 0. By
Lemma 3.6 we have )
g(t)

g(t)
fort > 0. Integrating this expression over, [lu||] we find

0
> _
— t
(4.1) W(u) > w(u/llulpful? .

14



Chooses € (0, 1) and sety = sin(arctan8) € (0, 1). Consider the set
K={ueE|uTeZ|u"|>y,lul=1}.

If Z = {0} the claim follows from¥ > 0. If dmZ > 1 there is(up) € K with
lIMp_ 0o ¥(Up) = inf W(K) =:§ > 0. SinceK is bounded we may assume thgt— u € E
such thaut — u™ in Z. Clearly|lu™| > y andu # 0. Now ¥ is weakly sequentially lower
semicontinuous. By Lemma 3.6 therefére W(u) > 0.

Letu € E- @ Z satisfy|lu|| > 1 and let us distinguish two cases|lf*|/|lu~| > B we
have

[ lu™|
=sin| arctan— | >y
[[ull u=]l

and thereforai/|lu|| € K. In view of (4.1) and the definition of we obtain® (u) > §|ul|®
and

1
d(u) < énuuz—auuuf’.
If lut|/lu”|| < B we have

1-— B2

- 2
2a+pM

1
(4.2) O = SUFIE = ™I <
For ||u|| large we find in either case that (4.2) is satisfied, and the claim is provedginee
1. O
Let K be the set of critical points cb.

4.3 Lemma. If either(V%) or (W3) holds, then there i& > 0 such that for any ue K \ {0}
we haved (u) > «.

Proof. First we show that|-|| is bounded away from 0 ot \ {0}. Letu € E \ {0} with
®'(u) = 0. If Ju|] < 1, using Lemma 3.4 we find

[ut)? = &' (W[uT] < Cllul?P~Ljut

lu™|1? = —¥'(W)[u~] < Cllull P ju |

and therefore
2p1—1
ull < Cllul|“P

where 201 — 1 > 1. This shows thafu|| > C > 0 for some independent constait
Next, from Lemma 3.6 we see that

1, 1,
o) = §<D (w[u] + E‘I’ (Wu] = w(u)

15



In the case of (}) we also haveju[|?> = W/(u)[u] and thus|jul| < C/®(u) for some inde-
pendentC.

In the case of (W) we argue as follows: I’ (u)[u] > 1 we have an independent positive
lower bound for® (u). If ¥/(u)[u] < 1, by Lemma 3.6 it follows that

W' (u)]| < Cy/ ¥/ (u)[u] < Cyeu),

leading to
lut 12 = W' (w[u™] < Cydu)lut]|
lu™|1? = —¥'(Wu"] < CyoWu| .

Again it follows that||u|| < C/®(u). In either case& (u) > C > 0 for some independe
since||u|| is bounded away from 0 ok \ {0} as shown above. O

4.2. Palais-Smale-Sequences

4.4 Lemma. Assume(V%) or (W3). If (uy) € E is a(PS.-sequence fofb, then c> 0 and
(up) is bounded.

Proof. Suppose thatu,) € E with ®(up) < C and||®'(up)|| < % From

1 / 1 /
®(up) = Eq) (Up)[un] + E‘I’ (Up)[un] — W (un)

(4.3) L _luall (E - E) @ (Un)[ur]
- 2n 2 0 o

we obtain

(4.4) Vit < (1+55)

If (V1) holds then®’(up)[un] = [lunll?2 + O(1/n)|lunll, and (4.4) yieldsjua|? < C(1 +
lunll/n). Consequentlyuy, || must be bounded.
If (W 3) holds, by Lemma 3.6

W' (un)ll < C(L+ W' (un)[un)) ,
and together with (4.4)

W' Ul < C (1+ ””””) |

n
Therefore

luf1? = @' (Un)[ug] + &' (unui] < C (1+ l'i””) lug |

lun 17 = =& (Un)[up] = ¥'(un)[ug] < C (1+ ””n””) lum -

We conclude thafup|| < C(1+ |lupll/n) and thatju, || must be bounded. In either case, from
(4.3) and Lemma 3.6 we find that alsa> O. O

16



Consider the action dZN on E given as follows: Ifm € ZN andu € E set(tmu)(X) =
u(x — m). From (\4) it follows that||-|| is invariant under this action, and the same holds for
(ON

4.5 Lemma. Assume(V%) or (Ws). Forc € R let (uy) € E be a(PS.-sequence forb.
Then either c= 0 and u, — 0 or ¢ > « and there are ke N, k < [c/«], and for each
1 <i < kasequencém; n)n < ZN and a functiorw; € E \ {0} such that, after extraction of
a subsequence ofi,),

-0

k
Un — mei’nvi
i=1
k k
<D<Z tmi,nvi> - Y ®d@i)=c
i=1 i=1

|Min — Mjn| = o0 fori # j
®'(vj) =0 for alli.

Proof. By Lemma 4.4(uy) is bounded irE. If

(4.5) nim sup|unl2,Brx) =0

o0
xeRN

for someR > 0 then by the well known Lemma I.1 in [1T}, — 0in LP for p € (2, 2%).
Using the splittings oW and f as in Sect. 3, from Lemma 3.6, (3.7), and Lemma 3.4 it
follows that||¥/(upn)|| — 0, and it is easily seen froffd’(un)|| — O that then alsdup|| — O
and thuss = 0.

If, on the other hand, (4.5) does not hold, extracting a subsequence there @are 0
and a sequence,) € RN such thafun|2, Br(x,) = B. SubstitutingR by R + V'N/2 we can
choose a sequencm; ) C ZN such thafunl2,Bg(m, ) = B. Thent_m, Un — v1 € E\ {0}
for a subsequence. From weak sequential continuity and invariandeuatier the action of
ZN we obtain thatd’(v1) = 0. Moreover

R +2 + +2 : +2 + +,2
Tim (U2 = U = Ty 07 12) = M (7 U2 = 17 U — vF11%)
L + + +,2
— nll—>mOO 2<T—m1,nun ) v]_ > - ”vl ”
+,2
= [lvz II*.

Here we have used that,, , commutes with the projectiorB*. Extracting subsequences as
we go along, by Lemma 3.5 and the last calculation there is a sequepce v1 in E such
that

CD(T—anUn) — CI)(T—ml,nun —v1n) = P(v1)
(D/(T—ml,nun) — (D/(T—ml,nun —vin) — ®'(v1) =0

17



and thus, settingz n = Un — Tm, ,V1,n

®(Uzn) — c— d(v)
CD/(Uz,n) — 0

asn — oo. By Lemma 4.3 and Lemma 4@ > ®(v1) > «. We can repeat this process
for (uzn). After at mostk < [c/«] iterations we finduk1.n = Un — Z!‘zl Tm Vi — 0as

n — oco. Here we can replacg ,, by vi. Also we see tha[j!‘=1 @ (vj) = c¢. Noting that(up)

is bounded and tha’ maps bounded sets into bounded sets, clearly

k
®(up) — @(Z Tmi,nvi> — 0.
i=1

To show the remaining assertion, assume timah —mj n| is bounded aB — oo for some
1<i < j <k. We can assume thah; , — m n| — oo foranyi < | < j. Suppose thatuy)
is the final extracted subsequence. Pft= m; n —mj . By constructionr_m, uj.n — 0 and
thustm:7_m; ,Uj.n — 0. But we also have_mj‘nuj,n — vj andtmyT-m, = Tomj s leading
tovj = 0. Contradiction. O

4.3. Proof of the Main Theorems

Now we can prove Theorem 2.1 and Theorem 2.2. ﬁ‘)(lv’r (W3) is satisfied, fixz € E™
with ||z]| = 1. By Lemma 4.2 there is > p such thatb(u) < O forallu € E~ & [Z] with
|u|l > r. Here [] denotes the span ¢£}. Consider

M={y+tz|]yeE™, |y+tz] <r, t >0}

and letMg be the boundary oM in E~ @ [2z]. Then supbP(M) < oo by Lemma 3.5 sincé/
is bounded, and sup(Mp) < 0 < inf ®(S,E™) from the choice of , since® < 0 onE~,
and by Lemma 4.1. In view of Lemma 3.5 and [28, Cor. 6.11] we can apply the theorem of
Kryszewski and Szulkin (cf. [28, Thm. 6.10] or [12]) to obtainRS.-sequencéu,) < E for
@, with c > 0. ForE~ = {0} this is of course the same as constructing a (PS)-sequence from
the Mountain Pass Theorem. By Lemma 4.5 there exists a nontrivial weak solution jor (P
The proof of the multiplicity results for (P follows the proof of [4, Thm. 1.2]. It rests
on [5, Thm. 5.2]. For the convenience of the reader we state the latter theorem here.
Let us writeE_ for the subspac&~ with the weak topology. Secbg ={ueE|ac<
®(u) < b}. Given an interval C R, call a setd c E a (P9, -attractor if for any (PS.-
sequencéun) with c € |, and anye, § > 0 one hasu, € U.(AN d)ﬁfg) providedn is large
enough. Consider the following hypothesesdn

(d1) ® € CY(E,R)is even andb(0) = 0.
(®2) There existk, p > 0 such thatb(z) > « for everyz ¢ E™ with ||z|| = p.

(®3) There exists a strictly increasing sequence of finite-dimensional subspacesE™
such that su@ (E,) < oo whereE, := E~ @ Z,, and an increasing sequence of real
numberg > 0 with ®(Ep \ B,) < inf ®(B,).
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(P4) ®(U) - —oo as|u~|| — oo and||u™ || bounded.

(P5) @' E, @ E+ - E’ is sequentially continuous, ardel: E;, & E* — R is sequentially
upper semicontinuous.

(®g) For any compact interval C (0, o0) there exists aP9),-attractor.4 such that
inf{jut —vT|| |Ju,ve A, ut vt} > 0.

4.6 Theorem (Bartsch-Ding, 1999)If ® satisfieq®1)—(®g) then there exists an unbounded
sequencéc,) of positive critical values.

Now we assume that either §)/or (Ws) holds and that () is satisfied. LetF consist of
arbitrarily chosen representatives of the orbit&innder the action dZN. By the evenness of
® we can also assume that= —F. Suppose that there are only finitely many geometrically
distinct solutions of (R) or, equivalently, thafF is finite. To reach a contradiction we want
to apply Theorem 4.6 and have to show that hypothedes(d¢) are satisfied forb. From
(F3) it follows that® is even and thus®,). (P») is stated in Lemma 4.14(3) follows from
Lemma 3.5 and Lemma 4.2. Conditio®4) holds sincel > 0.

The embeddinde,, @ E™ — E,, is sequentially continuous. Therefore, by Lemma 3.5,
VU’ is sequentially continuous o, ¢ E™, and the same holds fa’. For the same reason
W is sequentially lower semicontinuous &j, & E*. Moreover||-| is sequentially lower
semicontinuous ofE,,. These facts together give§).

Given any compact interval C (0, oo) with d = max| we setk = [d/«] and

j
[F. K] = {meivi

i=1

1§j§k,mieZN,vief}.

By Lemma 4.5 [F, k] is a (P9, -attractor. Since the projectiofs"™ commute with the action

of ZN onE, itis clear from [9, Prop. 2.57] thati{s) is also satisfied. We reach a contradiction,

because now Theorem 4.6 provides us with infinitely many geometrically distinct solutions.
It remains to prove the assertions pertaining to problen).(Bonsider the functional

1
¢_ao::§muﬂﬁ—ww—w>+uwm.

Critical points of®_ are in correspondence with solutions ta §PIf (V %) is satisfied, for any
critical pointu of ®_ we have

lull? = =¥’ (W[u] <0

by Lemma 3.6, so there is no nontrivial solution in this case.

Note that we have nowhere used th@t- A + V) is bounded below. So if (@ and (V%)
hold, for our discussion the subspades andE™, both being infinite dimensional separable
Hilbert spaces, are equivalent. By this we mean that we can apply the arguments from the
existence proofs above to the functiodal by interchanging the roles &~ andE™*. The
proof of the theorems is complete.
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