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Abstract

In an abstract setting we prove a nonlinear superposition principle for zeros of
equivariant vector fields that are asymptotically additive in a well-defined sense.
This result is used to obtain multibump solutions for two basic types of periodic
stationary Schrödinger equations with superlinear nonlinearity. The nonlinear
term may be of convolution type. If the superquadratic term in the energy func-
tional is convex, our results also apply in certain cases if 0 is in a gap of the
spectrum of the Schrödinger operator.

1. Introduction and Results

For N in N and a Caratheodory function f : RN × R→ R consider

(L) −∆u+ V (x)u = f(x, u) u ∈ H1(RN) .

We assume that f(x, u)/u → ∞ as |u| → ∞, that f(x, 0) = 0, and that V and f
are periodic with respect to x. Let T denote the unique self adjoint operator induced
on L2(RN) by −∆ + V . Denote by σ(T ) the L2(RN)-spectrum of T . We assume that
0 /∈ σ(T ) and let the positive case (or the case ofmountain pass geometry) refer to σ(T ) ⊆
(0,∞), and the strongly indefinite case (or the case of strongly indefinite geometry) to
σ(T ) ∩ (−∞, 0) 6= ∅.
Let us first recall some known results. Existence of a nontrivial solution of (L) is

shown for the positive case in [38]. In the strongly indefinite case existence results are
given in [3, 25] under the assumption that f increases strictly in u. Without this extra
assumption existence results for the strongly indefinite case can be found in [27,36,44].
The two papers [9,46] treat the case where 0 is the left endpoint of a gap of the spectrum
of T (see also [10]). Related results are also contained in [17–22,28,43], where equations
are treated that are not fully periodic in x.
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For certain periodically forced Hamiltonian systems infinitely many homoclinic orbits
are constructed as multibump solutions in [40] and [15]. Using some ideas from these
papers, in [4, 16, 41] it is shown for the positive case that (L) possesses infinitely many
geometrically distinct solutions. The article [4] also covers the strongly indefinite case
(for a very restricted class of nonlinearities f) and asymptotically periodic equations.
Our result in [2] gives a multiplicity result under very weak differentiability hypotheses
on f . All of these multiplicity results are proved by constructing multibump solutions.
In [2,16,32,33] also nodal properties of multibump solutions are considered. The earliest
reference we are aware of where multibump solutions are constructed for an elliptic PDE
is [8] (here it was done under different assumptions). More references on multibump
solutions can be found in the survey article [39] with focus on homoclinic orbits of
Hamiltonian systems. For f odd in u multiplicity of solutions for (L) in the positive and
the strongly indefinite case is shown in [9,27] (see also [10]). In contrast to the multibump
results mentioned above, in the latter references the authors develop a global variational
approach, applying a suitable index theory.
Motivated by the difficulty to adapt the methods used in [4, 16] to equations with

nonlocal terms, our goal in the present paper is to provide an abstract framework in
which multibump solutions can be obtained in many situations. The main result here
is Theorem 3.4. It reduces the problem of constructing multibump solutions to the
problem of finding an isolated solution with nontrivial topology in a specific sense.
We now describe our new results with respect to applications. Consider the following

class of nonlocal equations in R3:

(NL) −∆u+ V (x)u = (W ∗ u2)u u ∈ H1(R3) .

The function W : R3 → [0,∞) is assumed to be measurable and to lie in some suitable
function space (see Section 1.2) such that W ∗ u2, the convolution of the functions W
and u2, is well defined for u ∈ H1(R3).
This equation is treated for W (x) = 1/|x| in [12], where it is shown that (NL) admits

a nontrivial solution. Note that the proof extends to the case that W is a positive
definite function with suitable growth restrictions. Roughly, a positive definite function
is a function with nonnegative Fourier transform (in the sense of distributions). For a
survey on the notion of positive definite functions c.f. [42]. In [1] the existence result is
derived without the assumption of positive definiteness of W , for a more general class
of equations. In the latter paper, using results from [9,10], also multiplicity of solutions
for (NL) is proved.
Our first result concerning applications is that (NL) admits multibump solutions. It is

contained in Theorem 1.2 below. To the best of our knowledge existence of multibump
solutions has not been shown before for (NL).
Even though we were initially interested in nonlocal problems we also obtain a new

result for the local problem: From Theorem 1.2 it follows that multibump solutions for
(L) exist in the strongly indefinite case if f is strictly increasing in u. We show this for a
much broader class of functions f than considered in [4], see assumption (A1.4) below.
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1.1. Assumptions on the Local Problem (L)

Denote by 2∗ :=∞ for N = 1, 2 and 2∗ := 2N/(N−2) for N ≥ 3 the critical Sobolev ex-
ponent. Recall that we have set T = −∆+V . Using the notation F (x, u) :=

∫ u
0 f(x, s) ds

we make the following assumptions:
(A1.1) V ∈ L∞(RN), V is periodic, separately in each coordinate direction with minimal

period 1, and 0 /∈ σ(T ).

(A1.2) fu(x, u) exists everywhere, and fuu(x, u) exists for u 6= 0. fu is a Caratheodory
function. f(x, 0) = fu(x, 0) = 0 for all x. There are C ≥ 0 and p1, p2 ∈ (2, 2∗)
with p1 ≤ p2 such that
(1.1) |fuu(x, u)| ≤ C(|u|p1−3 + |u|p2−3)
holds for every u 6= 0 and all x. f is periodic in the first argument, separately in
each coordinate direction with minimal period 1.

(A1.3) There is θ > 2 such that
f(x, u)u ≥ θF (x, u) > 0

holds for every u 6= 0 and for all x.

(A1.4) For every u 6= 0 and for all x it holds that
fu(x, u)u2 > f(x, u)u .

Set E := H1(RN) and define Φ: E → R by

Φ(u) := 1
2

∫
RN

(|∇u|2 + V (x)u2) dx−
∫
RN
F (x, u) dx .

By our assumptions Φ ∈ C2, and critical points of Φ are in one to one correspondence
with weak solutions of (L). Note that by (1.1) the second differential of Φ is also Hölder
continuous, at the same time allowing for different superlinear growth of f in u at zero
and at infinity.

1.2. Assumptions on the Nonlocal Problem (NL)

We assume (A1.1) and the following hypotheses:
(A1.5) There is r ∈ [1,∞) such that W ∈ L1(R3) + Lr(R3), and W is even.

(A1.6) W ≥ 0, and W > 0 on a neighborhood of 0.

(A1.7) σ(T ) ⊆ (0,∞) or W is positive definite.
Set E := H1(R3) and define Φ: E → R by

Φ(u) := 1
2

∫
RN

(|∇u|2 + V (x)u2) dx− 1
4

∫
R3

(W ∗ u2)u2 dx .

By our assumptions Φ ∈ C2 and critical points of Φ are in one to one correspondence
with weak solutions of (NL).
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1.3. Results for the Applications

We treat (L) and (NL) together in the unified setting we have established so far. Note
that Φ(0) = 0 and Φ′(0) = 0. Define

K := {u ∈ E r {0} | Φ′(u) = 0 } .

Observe that for convenience we have excluded the critical point 0 from K. It is known
that, under the above assumptions, 0 is isolated in the set of critical points of Φ, so K
is closed. For all c, d in R denote

Kc := {u ∈ K | Φ(u) ≤ c }
Kdc := {u ∈ K | c ≤ Φ(u) ≤ d }
K(c) := Kcc .

A sequence (un) in E with Φ(un)→ c and Φ′(un)→ 0 is called a Palais-Smale sequence
at the level c, or (PS)c-sequence in short.
Denote by ? the action of ZN on E that arises from translation: For u ∈ E and a ∈ ZN

define (a ? u)(x) := u(x− a). From the periodicity assumptions on V (and f in (L)) it
follows that Φ is invariant under the action of ZN , so ZN also acts on K.

1.1 Definition. Two elements u, v of E will be called geometrically distinct if u and v
do not belong to the same class of E/ZN .
We say that a finite subset A of K generates multibump critical points of Φ if for every

k ∈ N, ε > 0 there is M ≥ 0 such that for all ai ∈ ZN and ui ∈ A (i = 1, 2, . . . , k) with

|ai − aj| ≥M if i 6= j

there is u ∈ K such that ∥∥∥∥∥u−
k∑
i=1

ai ? ui

∥∥∥∥∥ ≤ ε∣∣∣∣∣Φ(u)−
k∑
i=1

Φ(ui)
∣∣∣∣∣ ≤ ε .

We also call such a critical point u a (weak) multibump solution of (L) respectively (NL).

It is well known by now that under our assumptions K 6= ∅ and that Φ attains a
positive minimum on K. Therefore we set

cmin := min Φ(K) > 0 .

We call a critical point of Φ isolated if it is isolated in the set K. For the applications,
our main result then reads:

1.2 Theorem. a) Every finite set of isolated critical points in K(cmin) generates
multibump critical points of Φ.
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b) If there is an isolated critical point in K(cmin) then for every k ∈ N r {1} and
ε > 0 the set Kkcmin+ε

kcmin−ε/Z
N is infinite.

If Kcmin+ε/ZN is finite for some ε > 0 then all elements in K(cmin) are isolated critical
points of Φ. Hence the theorem states that under our assumptions there are always
infinitely many geometrically distinct weak solutions for both of (L) and (NL).

1.4. Discussion

Our main abstract result, Theorem 3.4, can be viewed as a nonlinear superposition
principle for zeros of equivariant vector fields that are asymptotically additive, in a
sense made precise via the notion of a BL-splitting map (cf. Definition 3.1 and condi-
tion (F3.2)). Starting with certain isolated zeros as building blocks, one obtains new
zeros near the sum of their translates if the translates are sufficiently far apart from each
other. For this principle to be applicable, some nontrivial topological information on the
building blocks is needed, namely nonvanishing of the local degree of the vector field (af-
ter a finite-dimensional local reduction). Theorem 3.4 is essentially independent of any
variational structure. Nevertheless, for simplicity we assume that the vector field is the
gradient of some functional. Symmetry of the derivative facilitates various constructions
and estimates.
For the application to the variational setting introduced above we consider the equiv-

ariant gradient vector field of Φ. We obtain the nontriviality of the reduced local degree
from the local linking structure of critical points. In the positive case these are points of
mountain pass type. The strongly indefinite case poses a harder problem. We are only
able to treat it here assuming convexity of the superquadratic part of Φ. This enables
us to reduce the problem to one with mountain pass geometry, and then to proceed as
in the positive case.
It is a challenge to prove a similar superposition principle from weaker topological

information on isolated critical points, for example from the existence of a nontrivial
critical group. Another interesting open problem is to remove the convexity assumption,
namely that f is increasing in u with respect to problem (L), in the strongly indefinite
case.
Let us comment on the hypotheses described in Sections 1.1 and 1.2. Concerning

assumption (A1.2) we remark that in our proof it is only needed that the superposition
operator induced by fu is uniformly Hölder continuous on bounded subsets of E.
In the positive case from [16] it is known that condition (A1.4) is not needed to

construct multibump solutions for (L). However, as mentioned above, our proof relies
on the fact that the local degrees of certain isolated critical points of mountain pass type
are not zero (after a finite-dimensional reduction). To show this requires that the kernel
of Φ′′ at such points is 1-dimensional if the Morse index vanishes. Assumption (A1.4)
implies that every critical point at the level cmin is of mountain pass type with Morse
index 1, hence satisfying the above requirement if it is isolated.
In a forthcoming paper we hope to weaken (A1.2) to the case that f is only once

continuously differentiable in u (with appropriate bounds on fu). Moreover we plan to
handle the positive case without assuming (A1.4).
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We have restricted our attention here to a very specific nonlocal equation. Using the
results from [1] it is easy to apply Theorem 1.2 to a larger class of nonlocal equations
with similar structure as (NL).
The organization of the paper is as follows: In Section 2 we analyze the reduction of a

vector field at a zero to the kernel of the differential and introduce the notion of reduced
local degree. Section 3 contains the statement and proof of the nonlinear superposition
principle. In Section 4 we show that the reduced degree of isolated critical points with
minimal positive energy is nonzero in the case of mountain pass geometry. Reducing it to
mountain pass geometry, we deal with the strongly indefinite case in Section 5. Finally,
in Section 6 we show that assumptions (A1.1)–(A1.7) are sufficient for the application
of the abstract results to (L) and (NL).
For the convenience of the reader there is a list of extra notation (used in Sections 2–5)

included in Table 1.

1.5. General Notation

We set R+ := (0,∞), R+
0 := [0,∞), R− := (∞, 0), and R−0 := (∞, 0]. For q ∈ [1,∞] we

denote the norm in Lq(RN) by | · |q. The scalar product in L2(RN) is written as (· , ·).
Initially we endow H1(RN) with the scalar product

〈u, v〉H1(RN ) :=
∫
RN

(∇u · ∇v + uv) dx

and the associated norm ‖u‖H1(RN ) :=
√
|∇u|22 + |u|22.

If X is a metric space, A is a point or a subset of X, and ρ ≥ 0, then we set

U(ρ,A;X) := Uρ(A;X) := {x ∈ X | distX(x,A) < ρ }
B(ρ,A;X) := Bρ(A;X) := {x ∈ X | distX(x,A) ≤ ρ }
S(ρ,A;X) := Sρ(A;X) := {x ∈ X | distX(x,A) = ρ } .

When there is no confusion possible we usually omit the X-dependency. If (X, ‖·‖) is a
normed vector space and A = 0, we often write UρX instead of Uρ(0;X), and so forth.
Also in this case we may omit the X-dependency.
For normed vector spaces X, Y we denote by L(X, Y ) the space of bounded linear

maps from X to Y , endowed with the uniform operator norm, and by Ls(X, Y ) the
same space endowed with the strong operator topology. As usual, if X = Y we write
L(X) := L(X,X). The dual of X is denoted by X∗, and the adjoint of A in L(X, Y )
is denoted by A∗. The space Xw is the space X endowed with its weak topology. We
denote weak convergence of a sequence in X with the symbol ⇀. If X, Y are normed
spaces and f : X → Y is a map, we say that f is weakly sequentially continuous if
f : Xw → Yw is sequentially continuous.
The kernel of a linear operator A will be denoted by N (A), its range by R(A). In a

Hilbert space setting the symbol P will be used exclusively for orthogonal projections.
Bounded projections that are not orthogonal will be denoted with symbols different from
P . Usually the range of a projection is given in the subscript.
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If U ⊆ X is open, n ∈ N0 and α ∈ (0, 1), we write Cn(U, Y ) for the space of functions
that have continuous derivatives up to order n, and by Cn+α(U, Y ) the subspace of func-
tions in Cn(U, Y ) where the n-th derivative is locally Hölder continuous with exponent
α. By Cn−(U, Y ) for n ≥ 1 we denote the subspace of functions in Cn−1(U, Y ) where
the derivative of order (n−1) is locally Lipschitz. We call a map from U into Y bounded
if it maps bounded subsets of U into bounded subsets of Y . We say that u ∈ Cn(U, Y )
uniformly on bounded subsets if all derivatives up to order n are bounded in this sense.
For α ∈ (0, 1) we say that u ∈ Cn+α(U, Y ) uniformly on bounded subsets if u ∈ Cn(U, Y )
uniformly on bounded subsets and if the n-th derivative of u is uniformly Hölder contin-
uous with exponent α on bounded subsets of U . A similar convention applies to spaces
of Lipschitz continuous functions.
For a finite-dimensional Banach space X, an open bounded subset U of X, a contin-

uous map f : U → X, and y ∈ X r f(∂U) the mapping degree of f with respect to y is
denoted as usual by deg(f, U, y). If x is an isolated zero of f , the local degree of f at x
(index of the zero x) will be denoted by degloc(f, x).

2. Reductions and the Reduced Local Degree

Here we introduce and analyze the notion of a local degree at a zero of a vector field after
a suitable finite-dimensional reduction. We do not intend to develop a degree theory.
Only some facts needed for the proof and application of the nonlinear superposition
principle will be presented.

2.1 Definition. Suppose that Z is a Banach space, and that X, Y are closed subspaces
of Z such that Z = X ⊕ Y . Endow X and Y with the norms induced by the norm of
Z. Denote by PY the projection in Z onto Y along X, and set PX := I − PY . Suppose
that for some z0 ∈ Z and an open neighborhood U of z0 in Z we are given f ∈ C1(U,Z)
such that PY f(z0) = 0, and such that PY f ′(z0)|Y ∈ L(Y ) is an isomorphism. Consider
the set

W := { z ∈ U | PY f(z) = 0 } .
Then by the implicit function theorem W can be described near z0 as the graph of a
C1-map h : VX → Y , where VX is an open neighborhood of 0 in X, as follows. There is
an open neighborhood VY of 0 in Y such that

W ∩ (z0 + VX + VY ) = { z0 + x+ h(x) | x ∈ VX } .

We call the map g : VX → X, given by g(x) := f(z0 + x + h(x)), a reduction of f at z0
to X along Y . Note that if X = {0} then g is just the trivial map on X.
If Z is a Hilbert space and X⊥Y , then we will usually omit the “along” part and

say that g is a reduction of f at z0 to X. If f is the gradient of some C2-functional
Φ: U → R, define Ψ(x) := Φ(z0 + x+ h(x)). We say that Ψ is a reduction of Φ at z0 to
X. In this case g is the gradient of the C2-functional Ψ.

2.2 Remark. It is clear that, in the setting above, the zeros of f in z0 + VX + VY are
in one-to-one correspondence with the zeros of g in VX .
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2.3 Definition. Suppose that Z is a Banach space and that for some z0 ∈ Z and an
open neighborhood U of z0 in Z we are given f ∈ C1(U,Z). Suppose moreover that
z0 is an isolated zero of f , that σ(f ′(z0)) r {0} is closed, and that X := N (f ′(z0)) is
finite-dimensional. Note that then f ′(z0) is a Fredholm operator of index 0. Let Y be
the closed invariant subspace of Z corresponding to σ(f ′(z0))r {0}. Then f ′(z0)|Y is an
isomorphism and a reduction g of f at z0 to X along Y is defined on some neighborhood
of 0 in X. Moreover, 0 is an isolated zero of g.
We define the reduced local degree rdegloc(f, z0) of f at z0 by rdegloc(f, z0) :=

degloc(g, 0). Here we set degloc(g, 0) := 1 if f ′(z0) is an isomorphism and hence g is
trivial.
If Z is a Hilbert space and f the gradient of some C2-functional Φ: U → R we define

the reduced local degree rdegloc(Φ, z0) of Φ at z0 by rdegloc(Φ, z0) := rdegloc(f, z0). Note
that in this situation for the spectral condition above to hold it suffices to assume that
f ′(z0) is Fredholm of index 0 since f ′(z0) is selfadjoint.

We need to have available a quantitative version of the reduction described in Def-
inition 2.1. Moreover, we want to extend Definition 2.1 to the case that z0 is only an
approximate zero of PY f .

2.4 Lemma. Let X, Y , Z, PX and PY be given as in Definition 2.1. For some constants
α ∈ (0, 1] and r,M > 0 suppose that ‖PY ‖ ≤M . Also suppose that we are given z0 ∈ Z
and f ∈ C1+α(Br(z0;Z), Z) such that

‖f‖C1+α(Br(z0;Z),Z) ≤M ,

and that PY f ′(z0)|Y ∈ L(Y ) is an isomorphism with ‖(PY f ′(z0)|Y )−1‖ ≤M . Then there
are positive constants r1 ≤ r2 ≤ r, C1 and C2, only depending on α, r and M , with the
following properties: If ‖PY f(z0)‖ ≤ C1 and if we set

W := { z ∈ z0 +Br1X +Br2Y | PY f(z) = 0 }

then there is h in C1+α(Br1X, Y ) such that

(i) W = { z0 + x+ h(x) | x ∈ Br1X }

(ii) ‖h‖C1+α(Br1X,Y ) ≤ C2

(iii) ‖h(x)‖ ≤ 2M(M2‖x‖+ ‖PY f(z0)‖) for every x in Br1X.

If we define g : Br1X → X by

g(x) := f(z0 + x+ h(x)) = PXf(z0 + x+ h(x))

then g ∈ C1+α(Br1X,X) and we have

(iv) ‖g‖C1+α(Br1X,X) ≤ C2

(v) ‖g(0)− PXf(z0)‖ ≤ C2‖PY f(z0)‖
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(vi) ‖g′(0)− PXf ′(z0)|X‖ ≤ C2
(
‖PY f(z0)‖α + ‖PXf ′(z0)|Y ‖ · ‖PY f ′(z0)|X‖

)
In the case that PY f(z0) = 0, we have

(vii) h(0) = 0

(viii) h′(0) = −(PY f ′(z0)|Y )−1PY f
′(z0)|X

(ix) g(0) = f(z0)

(x) g′(0) = PXf
′(z0)(IX + h′(0))

2.5 Remark. In the setting of Lemma 2.4, if ‖PY f(z0)‖ ≤ C1 we will say that g is a
reduction of f at z0 to X along Y , therefore widening the scope of Definition 2.1.

Lemma 2.4 can be viewed as a shadowing lemma where a point z0 that is a “non-
degenerate approximate Y -zero” of the vector field f is shadowed by a manifold W of
“Y -zeros” transverse to Y . Let us specialize Lemma 2.4 to the case that Y is the whole
space Z.

2.6 Corollary. Suppose that Z is a Banach space. For some constants α ∈ (0, 1] and
r,M > 0 suppose that we are given z0 ∈ Z and f ∈ C1+α(Br(z0), Z) such that

‖f‖C1+α(Br(z0),Z) ≤M ,

and such that f ′(z0) is an isomorphism with ‖(f ′(z0))−1‖ ≤M . Then there are positive
constants r2 ≤ r and C1, only depending on α, r and M , with the following properties:
If ‖f(z0)‖ ≤ C1 then f has exactly one zero z1 in Br2(z0). In addition, ‖z1 − z0‖ ≤
2M‖f(z0)‖.

Proof of Lemma 2.4. The proof is a simple application of the contraction mapping prin-
ciple. For convenience of the reader we provide a few details.
Suppose that X, Y, Z and f are given with the properties listed in the statement of

the lemma. After translation we may assume that z0 = 0. Set A := PXf
′(0)|X ∈ L(X)

and B := PY f
′(0)|Y ∈ L(Y ). We choose r2 ≤ r/2 independently of X, Y, Z and f such

that

(2.1) ‖f ′(z)− f ′(0)‖ ≤ 1
2M2

for all z ∈ B2r2Z. Moreover we set C1 := r2/(4M) and choose r1 ≤ r2 independently of
X, Y and f such that

‖f(z)− f(0)‖ ≤ C1

M

for all z ∈ Br1Z. Then if ‖PY f(0)‖ ≤ C1 it follows that

(2.2) ‖PY f(z)‖ ≤ 2C1 = r2

2M
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for all z ∈ Br1Z.
Now suppose that ‖PY f(0)‖ ≤ C1. Define ϕ : Br1X ×Br2Y → Y by

ϕ(x, y) := y −B−1PY f(x+ y) = B−1PY (f ′(0)y − f(x+ y)) .

It follows that ϕ(x, y) = y if and only if PY f(x+ y) = 0. Moreover

(2.3)

‖ϕ(x, y)‖ ≤M‖PY (f(x+ y)− f ′(0)y)‖

= M

∥∥∥∥∥PY f(x) +
∫ 1

0
PY (f ′(x+ sy)− f ′(0))y ds

∥∥∥∥∥
≤M

(
‖PY f(x)‖+ 1

2M ‖y‖
)

≤ r2

by (2.1) and (2.2), and since ‖x+y‖ ≤ 2r2 and ‖y‖ ≤ r2. So actually ϕ maps into Br2Y .
Now

‖DY ϕ(x, y)‖ ≤M2‖f ′(0)− f ′(x+ y)‖ ≤ 1
2

by (2.1) again. This shows that ϕ(x, ·) is a contraction on Br2Y , uniformly in x ∈ Br1X.
From Banach’s contraction mapping theorem we obtain a map h : Br1X → Br2Y such
that ϕ(x, y) = y if and only if y = h(x), for all (x, y) ∈ Br1X × Br2Y . Therefore h
satisfies (i). From (2.3) it also follows that

‖h(x)‖ ≤ 2M‖PY f(x)‖ ≤ 2M(M2‖x‖+ ‖PY f(0)‖)

and hence (iii).
Standard arguments [23, 1.2.6] show that h is continuously differentiable. The re-

maining estimates follow in a straightforward way. �

In the next lemma we relate the local degrees of finite-dimensional reductions of a
vector field to different subspaces, one included in the other. Again we define the local
degree of the trivial map {0} → {0} to be 1.

2.7 Lemma. Suppose that Z is a Banach space, U is an open neighborhood of z0 in Z
and f : U → Z is C1. Suppose also that z0 is an isolated zero of f . Set A := f ′(z0).
For i = 0, 1 let Xi be finite-dimensional and Yi closed subspaces of Z, such that Z =
X0 ⊕ Y0 = X1 ⊕ Y1, X0 ⊆ X1, and Y1 ⊆ Y0. Suppose moreover that Xi, Yi are invariant
with respect to A and that PYiA|Yi are isomorphisms. Denote by gi a reduction of f at
z0 to Xi along Yi, so 0 is an isolated zero of gi. Then

|degloc(g0, 0)| = |degloc(g1, 0)| .

Proof. We may assume that z0 = 0. Set Y2 := Y0 ∩X1 and let g2 denote a reduction of
g1 at 0 to X0 along Y2. We will prove that

(2.4) degloc(g0, 0) = degloc(g2, 0)
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and

(2.5) |degloc(g1, 0)| = |degloc(g2, 0)| ,

which proves the claim.
Denote by PXi the projection ontoXi with kernel Yi, for i = 0, 1 and set PYi := I−PXi .

Note that PX0|X1 is the projection inX1 with rangeX0 and kernel Y2, sinceX1 = X0⊕Y2.
Denote by

h0 : X0 → Y0

h1 : X1 → Y1

h2 : X0 → Y2

the maps defined near 0 that arise from the construction of the respective reductions gi.
It follows that for x ∈ X0 near 0

f(x+ h2(x) + h1(x+ h2(x))) = g1(x+ h2(x)) = g2(x) ∈ X0 .

Therefore by uniqueness h2(x) + h1(x + h2(x)) = h0(x) and g0 and g2 coincide near 0.
From this (2.4) follows.
To show (2.5) consider the maps G : X1 → X1 and G̃ : X1 → L(X1) defined locally at

0 by
G(z) := g1(x+ h2(x)) + g′1(0)[y − h2(x)]

and
G̃(z) :=

∫ 1

0

(
g′1(x+ sy + (1− s)h2(x))− g′1(0)

)
ds .

Here and in the sequel we always assume that z ∈ X1, x ∈ X0, y ∈ Y2, and z = x + y.
We may now write

g1(z) = G(z) + G̃(z)[y − h2(x)] .
Define the linear homotopy

H(t, z) := (1− t)g1(z) + tG(z)
= G(z) + (1− t)G̃(z)[y − h2(x)] .

We wish to show that H 6= 0 on [0, 1] × SrX1 for some small r > 0. To achieve this
recall that g1(x + h2(x)) = g2(x), that g′1(0) = PX1A|X1 , that Y2 is invariant under A,
and that PY2A|Y2 is an isomorphism. Hence there is M > 0 such that ‖Ay‖ ≥M‖y‖ for
all y ∈ Y2. By continuity of g′1 and h2 we may choose r > 0 small enough such that

‖PY2G̃(z)‖ ≤ M

2
if ‖z‖ ≤ r, and such that g1 has no zero in BrX1 besides 0. Fix z ∈ SrX1 and consider
two cases: a) y 6= h2(x). Here it follows that

‖PY2H(t, z)‖ ≥ ‖A[y − h2(x)]‖ − ‖PY2G̃(z)[y − h2(x)]‖

≥ M

2 ‖y − h2(x)‖ > 0 .
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b) y = h2(x). In this case we conclude
‖H(t, z)‖ = ‖g1(x+ h2(x))‖ > 0 .

Hence the linear homotopy from g1 to G has no zero on SrZ, and degloc(g1, 0) =
deg(G,Ur, 0).
It remains to calculate deg(G,Ur, 0). Since PX0G(z) = g1(x + h2(x)) = g2(x) is

independent of y, it is easily seen that deg(G,Ur, 0) = sign det(PY2A|Y2) degloc(g2, 0).
This finishes the proof. �

3. The Nonlinear Superposition Principle

Let E be a real separable Hilbert space with scalar product 〈·, ·〉E and associated norm
‖·‖E. Let G be an Abelian group acting isometrically on E, where we denote the group
operation by +, inversion in G by −, and the group action on E by a ? u, if a ∈ G and
u ∈ E. Suppose moreover that G is a directed set, where the direction will be denoted
by �. For simplicity we adopt the terminology of saying that a is larger than b if a, b ∈ G
and a � b. If a statement holds for all a larger that some A ∈ G, then we say that the
statement holds for a large enough. If X is a metric space and f : G → X is a net, then
by saying f(a) → x as a → ∞ we mean that lima∈G f(a) = x or, in other words, that
the net limit of f is x. This convention also applies to other type of limiting processes
over G.
Recall that a sequence (an) in G is called cofinal if for every A in G there is n0 in N

such that an � A whenever n ≥ n0. If G contains cofinal sequences then all limiting
processes with respect to nets into metric spaces can be examined by only considering
cofinal sequences.
We assume the following additional conditions on G and E:

(G3.1) G contains cofinal sequences.

(G3.2) If (an) is a cofinal sequence in G and a ∈ G, then (−an) and a + an are also
cofinal.

(G3.3) If (an) is a cofinal sequence in G and u ∈ E, then an ? u ⇀ 0.
Note that by (G3.1) and (G3.3) G is infinite if E is not trivial. Let us also consider
(G3.4) Every infinite subset A of G contains a cofinal sequence.
The following definition describes one of the basic concepts for the proof of the super-

position principle. It makes the statement precise that a vector field behaves asymptot-
ically like an additive map.
3.1 Definition. If X and Y are Banach spaces and f : X → Y is a map, then we say
that f has the BL-splitting property, satisfies the BL-splitting condition, or BL-splits, if
for every weakly convergent sequence (xn) in X with xn ⇀ x it holds that

f(xn)− f(xn − x)→ f(x)
in Y , as n→∞.

12



3.2 Remark. The letters BL in the definition above represent the use of Brezis-Lieb
type Lemmata to prove that the BL-splitting property holds.

3.3 Remark. For every T ∈ L(E) the maps u 7→ 〈Tu, u〉E and u 7→ Tu have the
BL-splitting property. In particular the map u 7→ ‖u‖2

E BL-splits. If f BL-splits then
necessarily f(0) = 0.

Now consider a differentiable map Ψ: E → R and denote its gradient by Λ. We
assume the following properties for Ψ:

(F3.1) There is α in (0, 1] such that Ψ ∈ C2+α(E,R), uniformly on bounded subsets.

(F3.2) Ψ, Ψ′ and Ψ′′ have the BL-splitting property.

(F3.3) Λ is weakly sequentially continuous.

(F3.4) For every u in E the operator Λ′(u) is compact.

(F3.5) Ψ is invariant under the action of G.

We also consider L ∈ L(E) with the properties

(L3.1) L is a selfadjoint isomorphism. Its spectrum is a finite set.

(L3.2) L is equivariant under the action of G.

Define the functional Φ: E → R by

(3.1) Φ(u) := 1
2〈Lu, u〉E −Ψ(u) ,

so Φ is also in C2+α(E,R), uniformly on bounded subsets, and Φ is invariant under the
action of G. Denote the gradient of Φ by Γ. From (F3.2) and Remark 3.3 it follows that

(3.2) Φ and Φ′ have the BL-splitting property.

Note however that this is not true for Φ′′ due to the quadratic first term in the definition
of Φ.
If ū is a critical point of Φ from our conditions on Ψ and L it follows that Γ′(ū) is a

selfadjoint Fredholm operator of index 0. Hence rdegloc(Φ, ū) is well defined if ū is an
isolated critical point of Φ.
To state the nonlinear superposition principle recall the definition of the set K of

nontrivial critical points of Φ and of the sets Kdc given in Section 1.3.

3.4 Theorem. a) Suppose that A is a finite set of isolated critical points of Φ, such
that Φ has nonzero reduced local degree at ū for every ū in A. Then A generates
multibump critical points of Φ.

b) Suppose that (G3.4) holds and that ū 6= 0 is an isolated critical point of Φ, such that
Φ has nonzero reduced local degree at ū. Then Kkc+εkc−ε/G is infinite for c := Φ(ū) and
for every ε > 0 and every k in Nr {1}.

The proof of this theorem will be given in Section 3.2.
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3.1. Technical Preliminaries

In this section we prepare the proof of Theorem 3.4.

3.5 Lemma. Let X, Y, Z and PX , PY be as in Definition 2.1. Suppose that U is an open
neighborhood of 0 in Z and that f, g ∈ C1+α(U,Z) satisfy

‖f‖C1+α(U,Z), ‖g‖C1+α(U,Z) ≤M0

for some M0 > 0. Suppose moreover that there is M1 > 0 such that

‖f ′(0)y‖ ≥M1‖y‖

for y ∈ Y . Then there is r0 > 0, only depending on M0, M1 and α, such that for every
r ∈ (0, r0] with Br(0) ⊆ U there are ε, δ > 0, only depending on r, M0, M1, and α, with
the following property: If

max{ ‖f(0)− g(0)‖, ‖f ′(0)− g′(0)‖ } ≤ ε

then
‖f(z)− g(z)‖ < ‖f(z)− f(0)‖

for every z ∈ SrZ with ‖PXz‖ ≤ δ.

Proof. Set µ := 2M0/M1. In the sequel we always assume that x ∈ X, y ∈ Y , z = x+ y
and

(3.3) ‖x‖ ≤ 1
1 + µ

‖z‖ .

It then holds that
µ‖x‖ ≤ ‖y‖

and
‖z‖ ≤ ‖x‖+ ‖y‖ ≤

(
1 + 1

µ

)
‖y‖ .

From these inequalities it follows that

(3.4) ‖f ′(0)z‖ ≥ ‖f ′(0)y‖ − ‖f ′(0)x‖ ≥M1‖y‖ −M0‖x‖

≥
(
M1 −

M0

µ

)
‖y‖ = M1

2 ‖y‖ ≥ C1‖z‖

with
C1 := µM1

2(1 + µ) .

Moreover, from the bounds on f we find

(3.5) ‖f(z)− f(0)− f ′(0)z‖ =
∥∥∥∥∫ 1

0
(f ′(sz)− f ′(0))z ds

∥∥∥∥ ≤ M0

1 + α
‖z‖1+α .
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Together with (3.4) we obtain

(3.6) ‖f(z)− f(0)‖ ≥ ‖f ′(0)z‖ − ‖f(z)− f(0)− f ′(0)z‖ ≥
(
C1 −

M0

1 + α
‖z‖α

)
‖z‖ .

Now set h := f − g. Then ‖h‖C1+α(U,Z) ≤ 2M0 and as in (3.5)

(3.7) ‖h(z)‖ ≤ ‖h(0)‖+ ‖h′(0)‖ · ‖z‖+ 2M0

1 + α
‖z‖1+α .

From (3.3), (3.6), and (3.7) it follows that if r > 0 is small enough we may choose ε > 0
small enough and define δ := r/(1 + µ) such that ‖z‖ = r, max{ ‖h(0)‖, ‖h′(0)‖ } ≤ ε
and ‖x‖ ≤ δ implies ‖h(z)‖ < ‖f(z)− f(0)‖. The proof is finished. �

3.6 Lemma. Suppose that Z is a Hilbert space with scalar product 〈·, ·〉, that X1 and
X2 are nontrivial closed subspaces, and that

γ := sup{ |〈x1, x2〉| | xi ∈ S1Xi } < 1 .

Then trivially X1 ∩X2 = {0}. Set X := X1 ⊕X2. If we denote, for i = 1, 2, by Pi and
P the orthogonal projections in Z onto Xi and X, respectively, then (P1 + P2)|X is an
isomorphism of X and

‖P − P1 − P2‖ ≤
2γ

1− γ .

Proof. Define Qi := Pi|X and Yi := N (Pi)∩X = N (Qi). If x ∈ S1X2 and y = Q1x then

y =
〈
x,

y

‖y‖

〉
y

‖y‖

and hence ‖y‖ ≤ γ. This implies ‖Q1|X2‖ ≤ γ and ‖Q1Q2‖ ≤ γ. We have N (I −Q1) ∩
X2 = X1 ∩X2 = {0}. If y ∈ Y1 and y = x1 + x2 such that xi ∈ Xi, then

(I −Q1)x2 = (I −Q1)[x1 + x2] = (I −Q1)y = y .

These facts show that (I − Q1)|X2 is an isomorphism from X2 onto Y1. From [26,
Thm. I.6.34] it now follows that

(3.8) ‖IX −Q1 −Q2‖ ≤ γ < 1

and hence that Q1 + Q2 = (P1 + P2)|X is an isomorphism. It is plain that P = (Q1 +
Q2)−1(P1 + P2). Moreover by (3.8)

‖P − P1 − P2‖ = ‖(IX − (Q1 +Q2)−1)(P1 + P2)‖

≤ 2
∥∥∥∥∥IX −

∞∑
k=0

(IX −Q1 −Q2)k
∥∥∥∥∥ ≤ 2γ

1− γ .

�
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3.2. Proof of Theorem 3.4

In this section we will write 〈·, ·〉 := 〈·, ·〉E and ‖·‖ := ‖·‖E. Moreover, for every closed
subspace X of E we denote by PX the orthogonal projection in E onto X.
We restrict ourselves to proving that the set {ū} generates critical points with two

bumps if ū is an isolated critical point of Φ with nonzero reduced local degree. The
general result can be obtained by making straightforward modifications to the proof
below.
Let us first state some useful facts. Here we write Σ(a) for the isometry that corre-

sponds to a in G. Suppose that X is a closed subspace of E and that a ∈ G. Since G
acts isometrically on E we have

(3.9) (Σ(a)X)⊥ = Σ(a)X⊥ .

From (3.9) it follows that

(3.10) PΣ(a)XΣ(a) = Σ(a)PX .

We introduce additional notation for convenience. Recall that Λ is the gradient of
Ψ and Γ is the gradient of Φ. Denote ua := ū + a ? ū, K := Λ′(ū), Ka := Λ′(a ? ū),
R := L−K, and Ra := L−Ka. Since Λ is equivariant by (F3.5), it follows that

(3.11)
KaΣ(a) = Σ(a)K
RaΣ(a) = Σ(a)R .

By (F3.4) K is compact and selfadjoint.
By (G3.3) ua ⇀ ū as a→∞ so that (F3.2) and (3.2) imply

(3.12)
Φ(ua)− Φ(a ? ū)− Φ(ū)→ 0
Γ(ua)− Γ(a ? ū)− Γ(ū)→ 0

Λ′(ua)− Λ′(a ? ū)− Λ′(ū)→ 0

as a→∞. By invariance
Φ(a ? ū) = Φ(ū)

for all a in G, so

(3.13) Φ(ua)→ 2Φ(ū) as a→∞.

By equivariance Γ(a ? ū) = a ? Γ(ū) = 0 for all a in G, so

(3.14) Γ(ua)→ 0 as a→∞.

Moreover, from (3.12) we obtain

(3.15) Γ′(ua) = L−K −Ka + o(1) as a→∞.
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We start by proving item a) of Theorem 3.4. To highlight the basic idea of the proof
we first assume that ū is a nondegenerate critical point of Φ. This case is considerably
simpler to treat. Since by (3.14) ua is an approximate zero of Γ for large a we can
apply Corollary 2.6 if we can show that Γ′(ua) is an isomorphism for large a and that
‖Γ′(ua)−1‖ remains bounded as a→∞. Therefore set M := ‖R−1‖. We claim that

(3.16) lim inf
a∈G

inf
y∈S1E

‖Γ′(ua)y‖ ≥
1
M

.

To show this consider a cofinal sequence (am) in G and a sequence (ym) in S1E. Ex-
tracting subsequences we may assume that

ym ⇀ v

(−am) ? ym ⇀ w .

We set zm := ym − v − am ? w so by (G3.2) and (G3.3)

(3.17)
zm ⇀ 0

(−am) ? zm ⇀ 0 .

Since K is compact, from these facts and (3.11) we obtain

K[am ? w]→ 0
Kamv = Σ(am)K[(−am) ? v]→ 0

Kamzm = Σ(am)K[(−am) ? zm]→ 0

and hence

(3.18) (L−K −Kam)ym = Rv + Σ(am)Rw +Rzm + o(1)

as m→∞. Using (3.15), (3.17), (3.18) and Remark 3.3 we obtain

‖Γ′(uam)ym‖2 = ‖(L−K −Kam)ym‖2 + o(1)
= ‖Rv‖2 + ‖Rw‖2 + ‖Rzm‖2 + o(1)

≥ 1
M2 (‖v‖2 + ‖w‖2 + ‖zm‖2) + o(1)

= 1
M2‖ym‖

2 + o(1) .

Since (am) and (ym) were chosen arbitrarily, (3.16) is proved.
By (3.16) and the selfadjointness of Γ′(ua) we may pick A in G such that Γ′(ua) is

invertible with
‖Γ′(ua)−1‖ ≤ 2M

for every a � A. Choosing A larger if necessary, this fact together with (F3.1), (3.14)
and Corollary 2.6 yields a constant C2, independent of a, such that Γ has a zero in
B(C2Γ(ua), ua) for every a � A. Therefore, for a large enough Γ has a zero v in Bε(ua)
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such that |Φ(v) − Φ(ua)| ≤ ε/2. Here we have used (F3.1) again. The number ε
is taken from the statement of the theorem. If a is chosen large enough then also
|Φ(ua) − 2Φ(ū)| ≤ ε/2 by (3.13), so |Φ(v) − 2Φ(ū)| ≤ ε. Hence we have proved the
existence of two-bump critical points of Φ near the sum of translates of the nondegenerate
critical point ū.
Now we take up the proof in the case that ū is degenerate. Property (L3.1), the

compactness and selfadjointness of K, and the separability of E imply the existence of
a sequence (Xn)n∈N0 of finite-dimensional R-invariant subspaces of E such that

N (R) = X0 ⊆ X1 ⊆ X2 ⊆ . . .

and

(3.19) E =
∞⋃
n=0

Xn .

Moreover, the spaces Yn := X⊥n are also invariant under R. We set Xa,n := Xn+Σ(a)Xn

and Ya,n := (Xa,n)⊥ = Yn ∩ (Σ(a)Yn).

3.7 Remark. If (um) is a bounded sequence in E such that PXnum → 0 as m→∞, for
all n in N0, then um ⇀ 0 as m → ∞. To see this fix some v in E and n in N0. Using
that ‖um‖ ≤ C for some positive constant C and all m we obtain

lim sup
m→∞

|〈um, v〉| ≤ lim sup
m→∞

|〈PXnum, v〉|+ lim sup
m→∞

|〈um, PYnv〉| ≤ C‖PYnv‖ .

Letting n→∞, the claim follows from (3.19).

Define
γ(a, n) := sup{ |〈x1, x2〉| | x1, (−a) ? x2 ∈ S1Xn } .

Since Xn is finite-dimensional it follows that

(3.20) γ(a, n)→ 0

as a → ∞, for n fixed. Consider the constant M := ‖(PY0R|Y0)−1‖. Since Yn is R-
invariant for n ∈ N0 it follows that

(3.21) ‖(PYnR|Yn)−1‖ ≤M

for n ∈ N0. We have the following asymptotic properties:

3.8 Lemma. For fixed n in N0 it holds that:

(i) lim
a∈G
‖PXn|Σ(a)Xn‖ = lim

a∈G
‖PΣ(a)Xn|Xn‖ = 0

(ii) lim
a∈G
‖PXnΓ′(ua)|Σ(a)Xn‖ = lim

a∈G
‖PΣ(a)XnΓ′(ua)|Xn‖ = 0

(iii) lim
a∈G
‖PXn(Γ′(ua)−R)|Xn‖ = lim

a∈G
‖PΣ(a)Xn(Γ′(ua)−Ra)|Σ(a)Xn‖ = 0
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(iv) lim
a∈G
‖PXa,nΓ′(ua)|Ya,n‖ = 0

(v) lim inf
a∈G

inf
y∈S1Ya,n

‖PYa,nΓ′(ua)y‖ ≥ 1/M

The proof of this lemma will be given at the end of this section.
For every a in G the operator PYa,nΓ′(ua)|Ya,n ∈ L(Ya,n) is selfadjoint. Hence from

Lemma 3.8(v) it follows that for large a it is invertible with

‖(PYa,nΓ′(ua)|Ya,n)−1‖ ≤ 2M .

Combining this fact with (F3.1), (3.14), (3.21) and the fact that the norms of orthogonal
projections are bounded by 1, we can apply Lemma 2.4 and Remark 2.5 to obtain
constants 0 < r1 ≤ r2 and C2 > 0, independently of n, and for each n in N0 some A(n)
in G such that for a � A(n) the following holds:

• The reduction Fn of Γ at ū to Xn exists on Br1Xn. It comes with a map
κn : Br1Xn → Br2Yn such that if x ∈ Br1Xn and y ∈ Br2Yn then PYnΓ(ū+x+y) = 0
if and only if y = κn(x). The following properties hold:

(3.22)
‖Fn‖C1+α(Br1Xn,Xn) ≤ C2

‖κn‖C1+α(Br1Xn,Br2Yn) ≤ C2

Fn(x) = Γ(ū+ x+ κn(x))

and
The zeros of Fn in Br1Xn are in one-to-one correspondence
with the zeros of Γ in ua +Br1Xn +Br2Yn.

(3.23)

• The reduction Ga,n of Γ at ua to Xa,n exists on Br1Xa,n. It comes with a map
ηa,n : Br1Xa,n → Br2Ya,n such that if x ∈ Br1Xa,n and y ∈ Br2Ya,n then PYa,nΓ(ua+
x+ y) = 0 if and only if y = ηa,n(x). The following properties hold:

(3.24)
‖Ga,n‖C1+α(Br1Xa,n,Xa,n) ≤ C2

‖ηa,n‖C1+α(Br1Xa,n,Br2Ya,n) ≤ C2

Ga,n(x) = Γ(ua + x+ ηa,n(x))

and
The zeros of Ga,n in Br1Xa,n are in one-to-one correspon-
dence with the zeros of Γ in ua +Br1Xa,n +Br2Ya,n.

(3.25)

By (3.14) and Lemma 2.4(iii) we can take r1 and r2 as small as we wish, as long as we
choose A(n) large enough for every n. By (F3.1) and (3.23) we may thus assume that
r1 and r2 are chosen such that if n ∈ N0 and a ∈ G with a � A(n), then

0 is the only zero of Fn in Br1Xn(3.26)
r1 + r2 ≤ ε(3.27)
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and if u ∈ ua +Br1Xa,n +Br2Ya,n then

|Φ(u)− Φ(ua)| ≤ ε/2 ,(3.28)

where ε is from the statement of the theorem. Subsequently we will enlarge each A(n)
even more, in finitely many steps, to ensure that certain additional conditions are met.
Define for every n in N0 the Banach space Zn := Xn ×Xn with norm

‖(x1, x2)‖Zn = ‖x1‖+ ‖x2‖ .

Also define

fn : Br1Xn ×Br1Xn → Zn

(x1, x2) 7→ (Fn(x1), Fn(x2))

and for a � A(n)

ga,n : Br1/2Xn ×Br1/2Xn → Zn

(x1, x2) 7→ (PXnGa,n(x1 + a ? x2),Σ(−a)PΣ(a)XnGa,n(x1 + a ? x2)) .

By (3.20) and Lemma 3.6 (PXn+PΣ(a)Xn)|Xa,n is invertible if a � A(n) for A(n) chosen
large enough. Now (3.25) yields that for a � A(n):

(3.29) The zeros of ga,n are in one-to-one correspondence with the
zeros of Γ in ua +Br1Xa,n +Br2Ya,n.

Note that

(3.30) 0 is the only zero of fn

by (3.26). From Lemma 2.7 we obtain

(3.31) degloc(fn, 0) = degloc(Fn, 0)2 = degloc(F0, 0)2 = rdegloc(Γ, ū)2 6= 0 .

Therefore our goal in the rest of the proof is to show that ga,n approximates fn well
enough for appropriate a and n such that by homotopy invariance of the degree we can
conclude.
Let us consider n fixed for the moment. Since Γ(ū) = 0 and since Xn and Yn are

invariant under R = Γ′(ū), Lemma 2.4(vi) yields

f ′n(0) =
(
R|Xn 0

0 R|Xn

)
.

It follows that

Vn := N (f ′n(0)) = X0 ×X0(3.32)
Wn := R(f ′n(0)) = (Y0 ∩Xn)× (Y0 ∩Xn)(3.33)

Zn = Vn ⊕Wn(3.34)
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and
Vn and Wn are invariant under f ′n(0).

If (y1, y2) ∈ Wn then

(3.35) ‖f ′n(0)(y1, y2)‖Zn = ‖(Ry1, Ry2)‖Zn = ‖Ry1‖+ ‖Ry2‖

≥ 1
M

(‖y1‖+ ‖y2‖) = 1
M
‖(y1, y2)‖Zn

since y1, y2 ∈ Y0. Moreover

‖ga,n(0)‖Zn ≤ C‖Ga,n(0)‖ ≤ C‖Γ(ua)‖

by Lemma 2.4(v), where C is independent of a � A(n). Therefore from (3.14) it follows
that ‖ga,n(0)‖Zn → 0 and hence by (3.30)

(3.36) ga,n(0) = fn(0) + o(1) as a→∞.

Combining (3.14) again with Lemma 3.8(iv) and Lemma 2.4(vi) yields

‖G′a,n(0)− PXa,nΓ′(ua)|Xa,n‖ → 0 as a→∞.

From this fact and from Lemma 3.8(ii) and (iii) we obtain

g′a,n(0) =
 PXnG

′
a,n(0)|Xn PXnG

′
a,n(0)|Σ(a)XnΣ(a)|Xn

Σ(−a)PΣ(a)XnG
′
a,n(0)|Xn Σ(−a)PΣ(a)XnG

′
a,n(0)|Σ(a)XnΣ(a)|Xn



=
 PXnΓ′(ua)|Xn PXnΓ′(ua)|Σ(a)XnΣ(a)|Xn

Σ(−a)PΣ(a)XnΓ′(ua)|Xn Σ(−a)PΣ(a)XnΓ′(ua)|Σ(a)XnΣ(a)|Xn

+ o(1)

=
PXnR|Xn 0

0 Σ(−a)PΣ(a)XnRaΣ(a)|Xn

+ o(1)

as a→∞. Note that PXnR|Xn = R|Xn by invariance and that

Σ(−a)PΣ(a)XnRaΣ(a)|Xn = PXnΣ(−a)RaΣ(a)|Xn = PXnRΣ(−a)Σ(a)|Xn = R|Xn .

Hence we arrive at

(3.37) g′a,n(0) = f ′n(0) + o(1) as a→∞.

Denote by QVn and QWn the projections with ranges Vn and Wn respectively, defined
in Zn corresponding to the splitting (3.34). We use Lemma 3.5, (3.30), (3.35), (3.36)
and (3.37) to make A(n) large enough and to find r3 ∈ (0, r1/2] and δ > 0 with the
following property:

(3.38) a � A(n), z ∈ Sr3Zn, ‖QVnz‖Zn ≤ δ ⇒ ‖fn(z)− ga,n(z)‖Zn < ‖fn(z)‖Zn .
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Here we choose the constants r3 and δ given by Lemma 3.5 independently of n and
a � A(n). This is possible since by (3.22) and (3.24) there are independent bounds on
‖fn‖C1+α and ‖ga,n‖C1+α , and since (3.35) is independent of a and n.
Further enlarging A(n) we may assume by Lemma 3.8(i) that for a � A(n)

(3.39) ‖PXn|Σ(a)Xn‖ ≤
1
n
, ‖PΣ(a)Xn|Xn‖ ≤

1
n
.

Now we explicitly consider the dependency of the above statements on n again. We
claim that there are n0 in N0 and Ã � A(n0) in G such that the following implication
holds:

(3.40) a � Ã, β ∈ R, z ∈ Sr3Zn0 , ‖QVn0
z‖Zn0

≥ δ, ga,n0(z) = βfn0(z) ⇒ β > 0 .

To prove the claim we argue by contradiction. If the claim is false, by a diagonal
selection process there exist a cofinal sequence (an) in G, a sequence (βn) in R, and a
sequence (zn) in E with the following properties:

an � A(n)(3.41)
zn ∈ Sr3Zn(3.42)
βn ≤ 0(3.43)

‖QVnzn‖ ≥ δ(3.44)
gan,n(zn) = βnfn(zn) .(3.45)

Set zn := (z1
n, z

2
n) where zin ∈ Xn for i = 1, 2. Denote xin := PX0z

i
n and xn := (x1

n, x
2
n).

Then xn = QVnzn ∈ Vn and δ ≤ ‖xn‖Zn = ‖x1
n‖+‖x2

n‖. After extraction of a subsequence
and relabeling we may assume that ‖x1

n‖ ≥ δ/2 for all n (otherwise exchange the roles of
x1
n and x2

n below). Since ‖z1
n‖ ≤ ‖zn‖Zn = r3, after repeatedly passing to a subsequence

we may assume that z1
n ⇀ z1 ∈ E. Since PX0 is finite-dimensional, x1

n → PX0z
1. This

yields ‖PX0z
1‖ ≥ δ/2 and hence z1 6= 0.

We have to consider the maps κn and ηa,n obtained in the definition of the reductions
Fn and Ga,n. By (3.22) ‖κn(z1

n)‖ remains bounded. Since κn(z1
n) ∈ Yn for all n it follows

that limn→∞‖PXmκn(z1
n)‖ = 0 for every m in N0. Remark 3.7 yields

κn(z1
n) ⇀ 0 as n→∞,

and from (F3.3) we obtain

(3.46) Fn(z1
n) = Γ(ū+ z1

n + κn(z1
n)) ⇀ Γ(ū+ z1) .

Let us turn to the weak limit of Gan,n(z1
n + an ? z

2
n). Since (an) is cofinal we have

(3.47) uan ⇀ ū .

Moreover ‖an ? z2
n‖ ≤ r3 and (an ? z2

n) ∈ Σ(an)Xn. Hence ‖PXn [an ? z2
n]‖ ≤ r3/n by

(3.39). Therefore ‖PXm [an ? z2
n]‖ → 0 as n→∞, for all m in N0. Again by Remark 3.7

(3.48) an ? z
2
n ⇀ 0 as n→∞.
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Since ηan,n(z1
n + an ? z

2
n) ∈ Yan,n ⊆ Yn is bounded by (3.24), Remark 3.7 yields

(3.49) ηan,n(z1
n + an ? z

2
n) ⇀ 0 as n→∞.

From (3.47), (3.48), and (3.49) we obtain

(3.50) PXnGan,n(z1
n + an ? z

2
n)

= PXnΓ(uan + z1
n + an ? z

2
n + ηan,n(z1

n + an ? z
2
n)) ⇀ Γ(ū+ z1) .

Here we have used the fact that if un ⇀ u in E, then also PXnun ⇀ u in E by (3.19).
Recall that ū is the only zero of Γ in Br3(ū;E), by (3.23) and (3.26). Therefore z1 6= 0

and ‖z1‖ ≤ r3 imply that

(3.51) Γ(ū+ z1) 6= 0 .

From (3.45) and the definition of fn and ga,n it follows that

〈PXnGan,n(z1
n + an ? z

2
n),Γ(ū+ z1)〉 = βn〈Fn(z1

n),Γ(ū+ z1)〉 .

Combining this with (3.46), (3.50), and (3.51) yields βn → 1 as n→∞, in contradiction
with (3.43). This concludes the proof of the claim and of (3.40).

We are now in the position to finish the proof of the theorem. Fix a in G with
a � Ã � A(n0) such that

(3.52) |Φ(ua)− 2Φ(ū)| ≤ ε

2 .

This is possible by (3.13). From (3.38) and (3.40) we deduce the implication

z ∈ Sr3Zn0 , β ∈ R, ga,n0(z) = βfn0(z) ⇒ β > 0 .

Together with (3.30) this implies that the linear homotopy H(t, z) := (1 − t)fn0(z) +
tga,n0(z), defined on [0, 1]×Br3Zn0 , satisfies

0 /∈ H([0, 1]× Sr3Zn0) .

In view of (3.31) we have deg(fn0 , Ur3Zn0 , 0) 6= 0. By the homotopy invariance of the
degree also ga,n0 must have a zero in Ur3Zn0 . Hence (3.29) yields a zero v of Γ in
ua +Br1Xa,n +Br2Ya,n. From (3.27), (3.28), and (3.52) we now deduce

‖ua − v‖ ≤ ε

and
|Φ(v)− 2Φ(ū)| ≤ ε .

This proves the first assertion of the theorem.
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To show item b) of Theorem 3.4 assume that (G3.4) holds. Following [15], for n ∈ N
and for a subset W ⊆ E let us denote

Tn(W ) :=
{

k∑
i=1

ai ? ui

∣∣∣∣∣ 1 ≤ k ≤ n, ui ∈ W, ai ∈ G
}
.

Using (G3.4) it can be proved in the same way as in [15, Prop. 1.55] that

(3.53) δn(W ) := inf{ ‖u− v‖ | u, v ∈ Tn(W ), u 6= v } > 0 if W is finite.

In the proof one only needs to replace “bounded sequence” with “sequence with no
cofinal subsequence” and “unbounded sequence” with “sequence that contains cofinal
subsequences”.
Fix ε > 0 and k ∈ N r {1}. Set δ := δk({ū}) as in (3.53). By what we have already

proved there is A in G such that, denoting

X :=
{

k∑
i=1

ai ? ū

∣∣∣∣∣ ai ∈ G, ai − aj � A for i 6= j

}
⊆ Tk({ū}),

for every u in X it holds that

Bδ/3(u) ∩ Kkc+εkc−ε 6= ∅.

By the definition of δ it now suffices to show that X/G is infinite.
For this purpose, fix elements a1, a2, . . . , ak−1 ∈ G such that ai− aj � A for i 6= j and

v :=
k−1∑
i=1

ai ? ū 6= 0 .

This is possible since ū 6= 0, ‖·‖2 BL-splits and G contains cofinal sequences.
Let (bn) denote a cofinal sequence in G such that bn − ai � A and ai − bn � A for all

i = 1, 2, . . . , k − 1 and all n. It follows that v + bn ? ū ∈ X for all n. Now we argue by
contradiction. If X/G is finite, after passing to a subsequence there is a sequence (cn) in
G and some w ∈ E such that v + bn ? ū = cn ? w for all n. Clearly, (cn) cannot contain
a constant subsequence, since ū 6= 0 and (bn) is cofinal. Passing to a subsequence, by
(G3.4) we may therefore assume that (cn) is cofinal. Then v = cn ? w − bn ? ū ⇀ 0 as
n→∞. This contradicts v 6= 0.
The proof of the theorem is complete. �

Proof of Lemma 3.8. (i) is a direct consequence of (3.20). To prove the other parts we
first show

lim
a∈G
‖PXnKa‖ = lim

a∈G
‖PΣ(a)XnK‖ = 0(3.54)

lim
a∈G
‖Ka|Xn‖ = lim

a∈G
‖K|Σ(a)Xn‖ = 0(3.55)

lim
a∈G
‖PΣ(a)XnL|Xn‖ = lim

a∈G
‖PXnL|Σ(a)Xn‖ = 0 .(3.56)
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Recall the identities given in (3.10) and (3.11). In what follows let (am) be any cofinal
sequence in G. Suppose that (xm) is a sequence in S1E. After extraction of a subsequence
we may assume that there is x in E such that (−am) ? xm ⇀ x. Then Kamxm =
Σ(am)K[(−am) ? xm] ⇀ 0 since K[(−am) ? xm] → Kx by the compactness of K, and
by (G3.2) and (G3.3). Since PXn is finite-dimensional we obtain PXnKamxm → 0 as
n → ∞. The same argument applied to PΣ(a)XnK then yields (3.54). The proof of
(3.55) is similar.
Suppose now that (xm) is a sequence in S1Xn. Since Xn is finite-dimensional (−am) ?

xm ⇀ 0. Hence also L[(−am) ? xm] ⇀ 0. Condition (L3.2) and the compactness of PXn
yield PΣ(a)XnLxm = Σ(am)PXnL[(−am) ? xm] → 0 as m → ∞. The other half of (3.56)
is proved similarly.
The statements (ii) and (iii) now follow from (3.15) and (3.54)–(3.56).
Recall that by (3.9) and the definition of Xn the subspaces Σ(a)Xn and Σ(a)Yn are

mutually orthogonal and invariant under Ra, if a ∈ G. Therefore (3.15) and (3.54) yield
lim
a∈G
‖PXnΓ′(ua)|Yn‖ = lim

a∈G
‖PXn(L−K −Ka)|Yn‖ = lim

a∈G
‖PXnR|Yn‖ = 0

and

lim
a∈G
‖PΣ(a)XnΓ′(ua)|Σ(a)Yn‖ = lim

a∈G
‖PΣ(a)Xn(L−K −Ka)|Σ(a)Yn‖

= lim
a∈G
‖PΣ(a)XnRa|Σ(a)Yn‖ = 0

Moreover, from (3.20) and Lemma 3.6 we know that
lim
a∈G
‖PXa,n − PXn − PΣ(a)Xn‖ = 0 .

Since Yn,Σ(a)Yn ⊆ Ya,n, these identities imply
lim
a∈G
‖PXa,nΓ′(ua)|Yan‖ ≤ lim

a∈G
‖PXnΓ′(ua)|Yn‖+ lim

a∈G
‖PΣ(a)XnΓ′(ua)|Σ(a)Yn‖ = 0

and prove (iv).
To show (v), note that by (iv) it suffices to prove

(3.57) lim inf
a∈G

inf
y∈S1Ya,n

‖Γ′(ua)y‖ ≥
1
M

.

Thus suppose that (am) is a cofinal sequence in G and that (ym) is a sequence in S1Ya,n.
Extracting subsequences we may assume that

(3.58)
ym ⇀ v ∈ Yn

(−am) ? ym ⇀ w ∈ Yn
since (ym) ⊆ Yn and ((−am) ? ym) ⊆ Yn. We set zm := ym − v − am ? w.
From here one proceeds exactly as in the proof of (3.16). Only note that now we have

to use (3.58) to see ‖Rv‖ ≥ ‖v‖/M and ‖Rw‖ ≥ ‖w‖/M , and that

‖Rzm‖ = ‖RPYnzm‖+ o(1) ≥ 1
M
‖PYnzm‖+ o(1) = 1

M
‖zm‖+ o(1)

since from zm ⇀ 0 it follows that PXnzm → 0 as m → ∞. This proves (3.57) and thus
(v). �
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4. Mountain Pass Geometry

Recall the setting of Section 3. The application of Theorem 3.4 requires that we produce
an isolated critical point with nonzero reduced local degree. In the present section we do
this in the classical framework of mountain pass geometry [7] that arises if L is positive
and Ψ in (3.1) is superquadratic. To keep the presentation short we do not strive for
utmost generality here.
The assumptions in this section are (G3.1)–(G3.3), (F3.1)–(F3.5), (L3.1), (L3.2), and

σ(L) ⊆ R+. By using a suitable equivalent scalar product 〈·, ·〉 and an associated
equivalent norm ‖·‖ on E we may assume that L = I and

Φ(u) = 1
2‖u‖

2 −Ψ(u) .

In addition we assume:

(G4.1) If A ⊆ G contains no cofinal sequence then A ? u is relatively compact for every
u ∈ E.

(F4.1) Ψ is weakly sequentially lower semicontinuous.

(F4.2) There is θ > 2 such that Ψ′(u)u ≥ θΨ(u) > 0 for every u ∈ E r {0}.

(F4.3) Ψ′′(u)[u, u] > Ψ′(u)u for all u ∈ E r {0}.

(F4.4) If (un) is a bounded sequence in E and an ? un ⇀ 0 as n→∞ for all sequences
(an) in G then Ψ′(un)un → 0.

Recall that we denote by K the set of nontrivial critical points of Φ. The following
proposition yields the statement of Theorem 1.2 if it is combined with Theorem 3.4.

4.1 Proposition. Under the hypotheses listed above, K is not empty, closed, and Φ
achieves a positive minimum on K. Moreover, denoting cmin := min Φ(K) > 0, every
isolated critical point in K(cmin) has nonzero reduced local degree.

Since these facts are more or less known the proof consists mainly of references to the
literature. It will be given in Section 4.1, exactly keeping track of assumptions for better
reference. This is necessary since the strongly indefinite case (handled in Section 5) relies
on the results of the present section, under a different set of hypotheses.
Some remarks on the assumptions we impose on the action of G on E are in or-

der. First, (G4.1) is clearly a consequence of (G3.4). On the other hand, consider the
condition

(G4.2) The stabilizer of every u in E r {0} is finite.

Recall that the stabilizer of u in E is the set of a in G such that a ? u = u. Under our
present assumptions (G3.4) follows from (G4.1) and (G4.2) if existence of an isolated
critical point of Φ is assumed. To see this, suppose that ū is an isolated critical point
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of Φ and that A is an infinite subset of G. By invariance G ? ū has no accumulation
point in E. If A contains no cofinal sequence, then by (G4.1) the set A ? ū is relative
compact, and it is infinite by (G4.2), a contradiction. In our applications hypothesis
(G4.2) is satisfied, so (G3.4) is necessary for the existence of isolated critical points. The
main reason we do not assume (G3.4) in the present section is that we want to state
Lemma 4.2 below under the weaker assumption (G4.1).

4.1. Proof of Proposition 4.1

First recall that from the BL-splitting property it follows that

(X4.1) Ψ(0) = 0, Ψ′(0) = 0, and Ψ′′(0) = 0.

Using (F4.3) it is easy to verify:

(X4.2) If u ∈ E r {0} satisfies Φ′(u)u = 0 then Φ′′(u)[u, u] < 0.

In [1, Lemma 4.2] it was shown that the following is a consequence of (F4.1) and (F4.2):

(X4.3) If Z is a finite-dimensional subspace of E then Φ(u) → −∞ as ‖u‖ → ∞, u in
Z.

Next we establish the standard splitting lemma.

4.2 Lemma. Recall that we have set cmin = inf Φ(K). It follows that cmin > 0. For
c ∈ R suppose that (un) ⊆ E is a (PS)c-sequence for Φ. Then either c = 0 and un → 0
or c ≥ cmin and there are k ∈ N, k ≤ [c/cmin], and for each 1 ≤ i ≤ k a sequence
(ai,n)n ⊆ G and an element vi ∈ K such that, after extraction of a subsequence of (un),∥∥∥∥∥un −

k∑
i=1

ai,n ? vi

∥∥∥∥∥→ 0

Φ
(

k∑
i=1

ai,n ? vi

)
→

k∑
i=1

Φ(vi) = c

and (ai,n − aj,n)n is cofinal for fixed i 6= j.

Proof. For a simple proof in an abstract setting see [1, Lemmata 4.3 and 4.5]. Only
the last statement deserves explanation. If un ⇀ 0 in E and if (an) ⊆ G contains no
cofinal subsequence, then for every v ∈ E the sequence ((−an) ? v) is relative compact
by (G4.1). Hence 〈an ? un, v〉 = 〈un, (−an) ? v〉 → 0. This shows that an ? un ⇀ 0. With
this fact in mind it is easy to transfer the proof to the present setting. �

4.3 Remark. In what follows we will only make use of (X4.1)–(X4.3) and of Lemma 4.2.

We need to introduce some more notation and concepts. First denote

Φ̇c := {u ∈ E | Φ(u) < c }
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for c in R. Following Hofer [24] we say that a critical point ū of Φ is of mountain pass
type if for every small enough neighborhood U of ū and c = Φ(ū) the set Φ̇c ∩ U is not
empty and not path connected.
From (X4.1) and (X4.3) one concludes that Φ has Mountain Pass geometry in the

following sense: Φ(0) = 0, inf Φ(SrE) > 0 for some r > 0, and there exists u in E
with ‖u‖ > r and Φ(u) ≤ 0. Hence there is a Palais-Smale sequence at a positive level
(see e.g. [45, Theorem 1.15]) and Lemma 4.2 yields K 6= ∅. Another application of
Lemma 4.2 shows that Φ achieves its positive infimum cmin on K.
For fixed u in E consider the map gu : R+

0 → R given by gu(t) := Φ(tu). From (X4.1)
and (X4.3) it follows that gu(0) = 0, gu(t) > 0 for small t > 0, and gu(t) → −∞ as
t → ∞. Moreover, by (X4.2) g′′u(t) < 0 if t > 0 and g′u(t) = 0. Hence there is a unique
tu > 0 such that g′u(tu) = 0, and gu achieves its maximum in tu. If u ∈ K then tu = 1.
It follows from these facts that Φ̇cmin has exactly two path connected components, one

of them containing 0 (see e.g. the proof of [34, Lemma 3.1]). Moreover, every element
in K(cmin) is of mountain pass type, and its Morse index is not zero.
Suppose now that ū is an isolated critical point of Φ in K(cmin). The generalized

Morse Lemma [14, Theorem 5.1] and the proof of [24, Theorem 2] yield that 0 is a strict
local minimum of the reduction of Φ at ū to N (Γ′(ū)). Then rdegloc(Φ, ū) 6= 0, as is well
known (see e.g. [6, 37]). This finishes the proof. �

5. Strongly Indefinite Geometry

Keeping the notation of Section 3 we now turn to the case of indefinite L. The strategy
is to assume convexity of Ψ, and to reduce the problem of finding an isolated critical
point of Φ with nonvanishing reduced local degree to the mountain pass case handled in
Section 4. This idea can be traced back to [5, 13] and was also used in [12].
Again we assume (G3.1)–(G3.3), (F3.1)–(F3.5) , (L3.1) and (L3.2). By a suitable

change of scalar product and norm on E we may assume the following setting: We are
given a splitting E = E+ ⊕ E− of E into orthogonal subspaces E± with associated
bounded projections P±. For u ∈ E we write u± := P±u. The spaces E± are invariant
under the action of G, and the projections P± are equivariant. Moreover, L = P+−P−
and

Φ(u) = 1
2(‖u+‖2 − ‖u−‖2)−Ψ(u) .

From Section 4 we assume hypotheses (G4.1), (F4.2) and (F4.4). Moreover we make
the assumptions that

(F5.1) Ψ is convex

(F5.2) Λ′ : Ew → Ls(E) is sequentially continuous at 0

(F5.3) There are C ≥ 0 and a map κ : R+
0 → R+

0 with the following properties:
limt→0 κ(t) = 0, κ(t) ≤ C(1 + t) for all t ≥ 0, and for all u ∈ E it holds
that

‖Ψ′(u)‖ ≤ κ(Ψ′(u)u) .
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(F5.4) For every u ∈ E r {0} and v ∈ E it holds that(
Ψ′′(u)[u, u]−Ψ′(u)u

)
+ 2

(
Ψ′′(u)[u, v]−Ψ′(u)v

)
+ Ψ′′(u)[v, v] > 0

The following theorem yields the statement of Theorem 1.2 if it is combined with
Proposition 4.1, Remark 4.3 and Theorem 3.4. Note that for the restricted group action
of G on E+ (G3.1)–(G3.3) and (G4.1) are also satisfied (replacing E by E+).

5.1 Theorem. There is a map h in C1(E+, E−) that is uniquely defined by either one
of the following properties: For u ∈ E+ and v ∈ E−

v 6= h(u) ⇔ Φ(u+ v) < Φ(u+ h(u))(5.1)
v = h(u) ⇔ P−Γ(u+ v) = 0 .(5.2)

Define Φr : E+ → R by Φr(u) := Φ(u+h(u)) and let Γr denote the gradient of Φr. Then
we have:

a) h ∈ C1+α(E+, E−) uniformly on bounded subsets.

b) Critical points of Φr and Φ are in one to one correspondence via the injective map
u 7→ u+ h(u) from E+ into E.

c) Φr has the form Φr(u) = 1
2‖u‖

2−Ψr(u) where, replacing E by E+, Φ by Φr and Ψ
by Ψr, conditions (F3.1)–(F3.5) and (X4.1)–(X4.3) apply. In addition, Lemma 4.2
is valid.

The proof will be given in Section 5.2.

5.1. More on the BL-splitting Property

Here we collect some results that allow us to prove the BL-splitting property for com-
positions of BL-splitting maps.

5.2 Definition. Suppose thatX, Y and Z are Banach spaces and thatK : X → L(Y, Z)
is a map. We say that K satisfies condition (K) if the following hold

(i) K BL-splits

(ii) K is bounded

(iii) K(x) is a compact operator for all x ∈ X

(iv) K : Xw → Ls(Y, Z) and K∗ : Xw → Ls(Z∗, Y ∗) are sequentially continuous at 0.

5.3 Lemma. Suppose that W,X, Y and Z are Banach spaces, K1 : W → L(X, Y ),
K2 : W → L(Y, Z), and K1 and K2 satisfy (K). Then K : W → L(X,Z) defined by
K(w) := K2(w)K1(w) satisfies (K).
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Proof. First we show that K BL-splits. Suppose that wn ⇀ w in W . Take a sequence
(xn) in S1X with

(5.3) ‖K2(w)K1(wn − w)xn‖ ≥ ‖K2(w)K1(wn − w)‖ − 1
n

for all n. For every y∗ ∈ Y ∗ we obtain from (iv) of condition (K) for K∗1 and from
K1(0) = 0 that K∗1(wn − w)y∗ → 0 and thus

y∗[K1(wn − w)xn] = K∗1(wn − w)[y∗][xn]→ 0

since (xn) is bounded. Hence K1(wn − w)xn ⇀ 0 in Y , so K2(w)K1(wn − w)xn → 0 by
the compactness of K2(w). Together with (5.3) it follows that

(5.4) ‖K2(w)K1(wn − w)‖L(X,Z) → 0 as n→∞.

Take a sequence (xn) in S1X with

(5.5) ‖K2(wn − w)K1(w)xn‖ ≥ ‖K2(wn − w)K1(w)‖ − 1
n

for all n. By compactness of K1(w), passing to a subsequence we may assume that
K1(w)xn converges in Y . Now the boundedness of K2, (iv) of condition (K) for K2, and
K2(0) = 0 imply that K2(wn − w)K1(w)xn → 0. Hence (5.5) yields

(5.6) ‖K2(wn − w)K1(w)‖L(X,Z) → 0 as n→∞.

Using (5.4), (5.6), and (i) and (ii) of (K) for K1 and K2 we obtain

K(wn) = (K2(w) +K2(wn − w))(K1(w) +K1(wn − w)) + o(1)
= K(w) +K(wn − w) + o(1)

as n→∞ and hence the BL-splitting property for K. Routine checks show that K also
satisfies (ii), (iii) and (iv) of condition (K). �

The next lemma is a straightforward consequence of the spectral theorem.

5.4 Lemma. Suppose that Z is a Hilbert space, K ∈ L(Z) is compact, selfadjoint,
and σ(K) ⊆ [0,∞). Then (I + K) is invertible and ‖(I + K)−1‖ ≤ 1. Setting L :=
I − (I +K)−1 we have ‖L‖ ≤ 1 and ‖Lz‖ ≤ 2‖Kz‖ for every z ∈ Z.

5.5 Lemma. Suppose that X is a Banach space, Z a Hilbert space, K : X → L(Z)
satisfies (K), and K(x) is selfadjoint with σ(K(x)) ⊆ [0,∞) for every x ∈ X. Define
L : X → L(Z) by L(x) := I − (I +K(x))−1. Then L satisfies condition (K).

Proof. From Lemma 5.4 and from the selfadjointness of K and L (ii)–(iv) of condition
(K) for L follow at once. Therefore it only remains to show the BL-splitting property
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for L. Suppose that xn ⇀ x in X. From condition (K) for K it follows as in the proof
of (5.4) and (5.6) that

‖K(x)K(xn − x)‖ → 0
‖K(xn − x)K(x)‖ → 0

(5.7)

as n→∞. Moreover by BL-splitting and boundedness of K

K(xn)K(xn − x)−K(xn − x)K(xn)
= K(x)K(xn − x)−K(xn − x)K(x) + o(1) = o(1) .

Hence
K(xn)K(xn − x) = K(xn − x)K(xn) + o(1)

and similarly

(5.8) K(xn)K(x) = K(x)K(xn) + o(1) .

Now set an := K(xn), b := K(x) and cn := K(xn − x). These linear operators
are uniformly bounded since K is a bounded map. In the following straightforward
computation we will thus freely commute an, b and cn a finite number of times, only
adding terms o(1) by (5.7)–(5.8):

(I + an)(I + b)(I + cn)(L(xn)− L(x)− L(xn − x))
= (I + an)(I + b)(I + cn)(−I + (I + b)−1 + (I + cn)−1 − (I + an)−1)
= an − b− cn − (2I + an)bcn + o(1)
= o(1) .

Here the last equality holds since K BL-splits and by (5.7). Note that by Lemma 5.4
‖(I+an)−1‖, ‖(I+b)−1‖ and ‖(I+cn)−1‖ remain bounded by 1, so we can conclude. �

5.2. Proof of Theorem 5.1

We start by constructing the map h. For fixed u ∈ E+ define ϕu : E− → R by

ϕu(v) := Φ(u+ v) = 1
2(‖u‖2 − ‖v‖2)−Ψ(u+ v) .

From the convexity of Ψ it follows that

(5.9) Ψ′′(u)[v, v] ≥ 0

for all u, v in E, and hence

(5.10) ϕ′′u(v)[w,w] = Φ′′(u+ v)[w,w] = −‖w‖2 −Ψ′′(u+ v)[w,w] ≤ −‖w‖2
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for all v, w in E−. Moreover

ϕu(v) ≤ 1
2(‖u‖2 − ‖v‖2)

since Ψ ≥ 0. Therefore ϕu is strictly concave and lim‖v‖→∞ ϕu(v) = −∞. From weak
sequential upper semicontinuity of ϕu it follows that there is a unique strict maximum
point h(u) for ϕu, which is also the only critical point of ϕu on E−. This proves (5.1)
and (5.2).
For later use we note that (5.10) and ϕ′u(h(u)) = 0 imply for all u ∈ E+ and v ∈ E−

that

ϕu(v)− ϕu(h(u)) =
∫ 1

0
(1− t)ϕ′′u(h(u) + t(v − h(u)))[v − h(u), v − h(u)] dt

≤ −1
2‖v − h(u)‖2

and hence

(5.11) ‖h(u)− v‖2 ≤ 2(Φ(u+ h(u))− Φ(u+ v)) .

From (5.10) it follows that P−Γ′(u+ h(u))|E− is an isomorphism with

(5.12) ‖(P−Γ′(u+ h(u))|E−)−1‖ ≤ 1

for every u ∈ E+. Hence Lemma 2.4 yields that locally h ∈ C1+α and

h′(u) = −(P−Γ′(u+ h(u))|E−)−1P−Γ′(u+ h(u))|E+

= −(IE− + P−K(u)|E−)−1P−K(u)|E+

= (IE− − (IE− + P−K(u)|E−)−1)P−K(u)|E+ − P−K(u)|E+

(5.13)

Here we have set

(5.14) K(u) := Λ′(u+ h(u))

for u ∈ E+. Moreover we see from Lemma 2.4 and Φ′(0) = 0 that

h(0) = 0

and hence by (5.13) that
h′(0) = 0 .

Observe that by (F3.1), (F3.2), (F3.4), (F5.2), and by the selfadjointness of Λ′(u) for
every u ∈ E the map Λ′ satisfies condition (K).
The next Lemma implies a) of Theorem 5.1.

5.6 Lemma. (i) h is equivariant under G.

(ii) The map h is in C1+α(E+, E−), uniformly on bounded subsets.
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(iii) h is weakly sequentially continuous and BL-splits.

(iv) h′ satisfies condition (K).

Proof. (i) If u ∈ E+ and a ∈ G we have by invariance of Φ and by (5.1)

Φ(a ? u+ h(a ? u)) = Φ(u+ (−a) ? h(a ? u)) ≤ Φ(u+ h(u))
= Φ(a ? u+ a ? h(u)) ≤ Φ(a ? u+ h(a ? u)) .

Hence the inequalities are in fact equalities, and

Φ(a ? u+ a ? h(u)) = Φ(a ? u+ h(a ? u))

together with (5.1) implies that a ? h(u) = h(a ? u).
(ii) For u ∈ E+ we obtain from (5.1) and Ψ ≥ 0 that

0 ≤ Φ(u+ h(u))− Φ(u) = −1
2‖h(u)‖2 + Ψ(u)−Ψ(u+ h(u)) ≤ −1

2‖h(u)‖2 + Ψ(u) .

Hence the boundedness of Ψ implies that of h. Now the boundedness of h and Λ′ imply
the boundedness of h′ in view of (5.12) and (5.13). Moreover boundedness of h, (5.12),
(F3.1), and Lemma 2.4 imply that for each r1 ≥ 0 there are C ≥ 0 and r2 ≥ 0 such that

‖h′(u)− h′(v)‖ ≤ C‖u− v‖α

holds whenever u, v ∈ E+, ‖u − v‖ ≤ r2, and ‖u‖, ‖v‖ ≤ r1. Together with the bound-
edness of h′ this yields uniform Hölder continuity of h′ with exponent α on bounded
subsets of E+.
(iii) First we claim that

(5.15) h is weakly sequentially continuous at 0.

To see this suppose that un ⇀ 0 in E+. Since h is bounded, passing to a subsequence
we may assume that h(un) ⇀ v in E−. Then un + h(un) ⇀ v. Now (5.1) together with
Ψ ≥ 0 and the BL-splitting property of Φ implies that

1
2‖v‖

2 ≤ −Φ(v) = Φ(un + h(un)− v)− Φ(un + h(un)) + o(1) ≤ o(1)

as n→∞. Hence v = 0, and (5.15) is proved since h(0) = 0.
Next we show that

(5.16) h BL-splits.

Suppose therefore that un ⇀ u in E+. We may again assume that h(un) ⇀ v in E−.
Note that h(un − u) ⇀ h(0) = 0 by (5.15). Using that Φ BL-splits, we therefore obtain

Φ(un + h(un)) = Φ(u+ v) + Φ(un − u+ h(un)− v) + o(1)
≤ Φ(u+ h(u)) + Φ(un − u+ h(un − u)) + o(1) by (5.1)
= Φ(un + h(u) + h(un − u)) + o(1) by (5.15)
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as n→∞. Together with (5.11) it now follows that

‖h(un)− h(u)− h(un − u)‖2 ≤ 2(Φ(un + h(un))− Φ(un + h(u) + h(un − u))) ≤ o(1)

and (5.16) is proved.
It is clear that (5.15) and (5.16) imply that

h is weakly sequentially continuous.

(iv) Since Λ′ satisfies (K), h BL-splits, and h is bounded and weakly sequentially
continuous, it is straightforward to see that K as defined in (5.14) also satisfies condition
(K). Hence the claim follows from (5.9), (5.13), and Lemmata 5.3 and 5.5. �

Define Φr and Γr as in the statement of the theorem. From (5.2) it is clear that b) of
Theorem 5.1 holds. Moreover it is easy to see that Φr ∈ C2+α(E+,R) and

Γr(u) = Γ(u+ h(u)) = P+Γ(u+ h(u)) .(5.17)
Γ′r(u) = Γ′(u+ h(u))(I + h′(u)) = P+Γ′(u+ h(u))(I + h′(u))(5.18)

We now turn to the proof of c). Set

Ψr(u) := 1
2‖h(u)‖2 + Ψ(u+ h(u))

for u in E+. It follows that Φr(u) = 1
2‖u‖

2 − Ψr(u). From (5.2) we obtain for u in E+

that

(5.19) P−Λ(u+ h(u)) = −h(u)

and hence for all v in E+

Ψ′r(u)v = 〈h(u), h′(u)v〉+ 〈Λ(u+ h(u)), v + h′(u)v〉 = 〈P+Λ(u+ h(u)), v〉 .

Denoting by Λr the gradient of Ψr this yields

Λr(u) = P+Λ(u+ h(u))(5.20)
Λ′r(u) = P+K(u)|E+ + P+K(u)h′(u) .(5.21)

Using the properties of Ψ, K and h it is straightforward to check that (F3.1)–(F3.5)
and (X4.1) hold if E is replaced by E+, Φ is replaced by Φr and Ψ is replaced by Ψr.
To see (X4.2) fix x in E+ r {0} with Φ′r(x)x = 0, and set u = x + h(x) and v =

h′(x)x− h(x) ∈ E−. Then u 6= 0 and by (5.19)

(5.22) 0 = Φ′r(x)x = ‖x‖2 −Ψ′r(x)x = ‖x‖2 − 〈Λ(u), x〉
= ‖x‖2 − ‖h(x)‖2 − 〈Λ(u), x+ h(x)〉 = ‖u+‖2 − ‖u−‖2 − 〈Λ(u), u〉

and

(5.23) P−Λ(u) = −u− .
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We now calculate using u 6= 0, v ∈ E−, (5.18), (5.19), (5.22), (5.23) and (F5.4):
Φ′′r(x)[x, x] = 〈Γ′r(x)x, x〉

= 〈Γ′(u)[x+ h′(x)x], x+ h′(x)x〉
= 〈Γ′(u)[u+ v], u+ v〉
= 〈Γ′(u)u, u〉+ 2〈Γ′(u)u, v〉+ 〈Γ′(u)v, v〉
= ‖u+‖2 − ‖u−‖2 − 〈Λ′(u)u, u〉+ 2〈u+ − u− − Λ′(u)u, v〉

+ 〈−v − Λ′(u)v, v〉
= 〈Λ(u)− Λ′(u)u, u〉+ 2〈Λ(u)− Λ′(u)u, v〉 − 〈Λ′(u)v, v〉 − ‖v‖2

= (Ψ′(u)u−Ψ′′(u)[u, u]) + 2(Ψ′(u)v −Ψ′′(u)[u, v])
−Ψ′′(u)[v, v]− ‖v‖2

< 0 .
This proves (X4.2).
5.7 Remark. The above computation using condition (F5.4) goes back to an idea of
Pankov [35]. It was also used in [29].
Turning to the proof of (X4.3) for Φr defined on E+ suppose that Z is a finite-

dimensional subspace of E+. If u ∈ Z then u + h(u) ∈ Z ⊕ E−, and ‖u + h(u)‖ →
∞ as ‖u‖ → ∞. Observe that the convexity of Ψ implies its weak sequential lower
semicontinuity. This fact together with (F4.2) is sufficient to use Lemma 4.2 in [1].
Applying this lemma we obtain that

Φr(u) = Φ(u+ h(u))→ −∞
as ‖u‖ → ∞ and u ∈ Z.
It only remains to prove the assertion of Lemma 4.2 for Φr. Set

Kr := {u ∈ E+ r {0} | Φ′r(u) = 0 } .
By b) of Theorem 5.1 K = {u + h(u) | u ∈ Kr } and Kr = P+K. It was shown
in [1, Lemma 4.3] that inf Φ(K) > 0. From inf Φr(Kr) = inf Φ(K) it follows that cmin :=
inf Φr(Kr) > 0. Suppose now that c ∈ R and that (xn) ⊆ E+ is a (PS)c-sequence for Φr.
Since P−Γ(xn + h(xn)) = 0 it follows immediately from (5.17) that un := xn + h(xn)
defines a (PS)c-sequence for Φ. We can apply Lemma 4.2 for Φ, which can be proved
under our present conditions on Φ (see [1]). Hence either c = 0 or c ≥ cmin. In the first
case un → 0 and xn = P+un → 0 as n → ∞. In the second case let k in N, (ai,n)n in
G and vi in K be given with the properties stated in Lemma 4.2. Set yi := P+vi, so
vi = yi + h(yi) and yi ∈ Kr. Clearly∥∥∥∥∥xn −

k∑
i=1

ai,n ? yi

∥∥∥∥∥ =
∥∥∥∥∥P+

(
un −

k∑
i=1

ai,n ? vi

)∥∥∥∥∥ = o(1)

as n→∞. Moreover

c =
k∑
i=1

Φ(vi) =
k∑
i=1

Φr(yi) = Φr

(
k∑
i=1

ai,n ? yi

)
+ o(1)

as n→∞ since Φr BL-splits and is G-invariant. This finishes the proof of Theorem 5.1.
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6. Applications

To apply the abstract theorems proved in the preceding sections we now analyze the
relevant properties of the variational functionals involved. As in the introduction let
us denote E := H1(RN), and let T denote the unique selfadjoint operator induced on
L2(RN) by −∆ + V . Moreover, assume condition (A1.1). In what follows, for t > 0 we
write Lt := Lt(RN).

6.1. The Group Action

Recall the definition of the action of ZN on E by translation, as described in Section 1.3.
We define G := ZN and define the direction � on G as follows: If a, b ∈ G, then a � b if
and only if |a| ≥ |b|. It is clear that then (G3.1)–(G3.4), (G4.1) and (G4.2) hold for the
action of G on E.

6.2. The Quadratic Part

Denote E± := E ∩ (L2)±, where (L2)± are the generalized eigenspaces of T in L2 cor-
responding to the positive and negative part of σ(T ). Of course, if σ(T ) ⊆ R+ then
E− = {0}. Denote by P± the pair of bounded projections induced by the splitting
E = E+ ⊕ E−. For u in E we write u± := P±u. The projections P± are equivariant
and the spaces E± invariant under the action of ZN .
As is often done we endow E with the scalar product

〈u, v〉 := (|T |1/2u, |T |1/2v)

The projections P± are orthogonal with respect to 〈· , ·〉, and the norm induced by this
new scalar product will be denoted by ‖·‖. It is equivalent to the original norm on
H1(RN) introduced in Section 1.5. We can now write∫

RN
(|∇u|2 + V (x)u2) dx = ‖u+‖2 − ‖u−‖2 .

6.3. Analysis of Multiplication and Superposition Operators

The proof of regularity, compactness and BL-splitting properties of the superquadratic
part in the energy functional will be based on the following technical lemmata.

6.1 Lemma. Suppose that s, t, µ ≥ 1 are given with

1
s

+ 1
t

= 1
µ
.

Then the bilinear map

Ls × Lt → Lµ

(u, v) 7→ uv
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is bounded with |uv|µ ≤ |u|s|v|t. If (un) and (vn) are bounded sequences in Ls and Lt
respectively, if u ∈ Ls and v ∈ Lt, un → u in Ls and vn → v in Ltloc, then unvn → uv in
Lµ.

We omit the easy proof. For the second statement see also the proof of [1, Lemma 3.1].

6.2 Lemma. Suppose we are given r, s, t ∈ [1,∞), U ∈ Lr, such that

1
r

+ 1
s

= 1 + 1
t
.

Then the linear operator

Ls → Lt

u 7→ U ∗ u

is bounded and |U ∗ u|t ≤ |U |r|u|s. If u is in Ls and if (un) is a bounded sequence in Ls
such that un → u in Lsloc, then (U ∗ un) is bounded in Lt and U ∗ un → U ∗ u in Ltloc as
n→∞.

The preceding lemma was also proved in [1, Lemma 3.1].
Now we formulate yet another variant of the well-known Brezis-Lieb Lemma [11]. A

similar statement was proved in [1, Lemma 3.2].

6.3 Lemma. Suppose we are given t ≥ 1, µ > 0 such that tµ ≥ 1. Suppose that
f : RN × R→ R is a Caratheodory function such that there is C ≥ 0 with

|f(x, u)| ≤ C|u|µ

for all x and u. Denote by Σf the (continuous) superposition operator induced by f ,
mapping Ltµ into Lt, and assume that Σf is uniformly continuous on bounded subsets.
Then for every bounded sequence (un) in Ltµ that converges in Ltµloc to some u ∈ Ltµ it
holds that

Σf (un)− Σf (un − u)→ Σf (u) in Lt

as n→∞.

Proof. Assume by contradiction that after passing to a subsequence it holds that

(6.1) lim inf
n→∞

‖Σf (un)− Σf (un − u)− Σf (u)‖Lt > 0 .

Define functions Qn : [0,∞)→ [0,∞) by

Qn(R) :=
∫
BR
|un|tµ dx .

Then the functions Qn are uniformly bounded and nondecreasing. Passing to a subse-
quence we may assume that (Qn) converges pointwise almost everywhere to a bounded
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nondecreasing function Q [30]. Again passing to a subsequence it is easy to build a
sequence Rn →∞ such that for every ε > 0 there is R > 0, arbitrarily large, with

lim sup
n→∞

(Qn(Rn)−Qn(R)) ≤ ε .

Hence for fixed ε > 0 we may choose R > 0 such that

lim sup
n→∞

∫
BRnrBR

|un|tµ dx ≤ ε and
∫
RNrBR

|u|tµ dx ≤ ε .

Set vn := χBRnu. From the continuity of Σf on Ltµ(BR) we obtain

lim
n→∞

∫
BR
|f(x, un)− f(x, un − vn)− f(x, vn)|t dx

= lim
n→∞

∫
BR
|f(x, un)− f(x, un − u)− f(x, u)|t dx = 0 .

From this it follows that

lim sup
n→∞

∫
RN
|f(x, un)− f(x, un − vn)− f(x, vn)|t dx

= lim sup
n→∞

∫
BRn\BR

|f(x, un)− f(x, un − u)− f(x, u)|t dx

≤ C lim sup
n→∞

∫
BRn\BR

(|un|µ + |un − u|µ + |u|µ)t dx

≤ C lim sup
n→∞

∫
BRn\BR

(|un|tµ + |u|tµ) dx

≤ Cε

where C is independent of ε. Letting ε tend to 0 and using that vn → u in Ltµ we obtain

Σf (un)− Σf (un − vn)− Σf (u)→ 0 in Lt .

Hence by (6.1)

lim inf
n→∞

‖Σf (un − vn)− Σf (un − u)‖Lt = lim inf
n→∞

‖Σf (un)− Σf (u)− Σf (un − u)‖Lt > 0 ,

in contradiction with the uniform continuity of Σf on bounded subsets of Ltµ. �

6.4. The Local Equation

Recall the assumptions (A1.2)–(A1.4) we have required on f . Also recall the embeddings
E → Lp for p ∈ [2, 2∗). It holds that if un ⇀ u in E then (un) is bounded in Lp and
converges to u in Lploc, for p ∈ [2, 2∗). The nonlinearity can be written as f = f 1 + f 2

where

(6.2) |f iuu(x, u)| ≤ C(|u|pi−3)
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for i = 1, 2. Therefore it is easy to prove (F3.1)–(F3.5), (F4.1)–(F4.3), (F5.1) and (F5.2)
for Ψ: E → R defined by

Ψ(u) :=
∫
RN
F (x, u) dx ,

using Lemmata 6.1 and 6.3. One should keep in mind here that the composition of a
BL-splitting map with a bounded linear operator also BL-splits.
To see that (F4.4) holds, suppose that (un) is a bounded sequence in E such that

an ? un ⇀ 0 as n→∞ for every sequence (an) in G. It follows that an ? un → 0 in Lploc
for every sequence (an) in G and every p ∈ [2, 2∗). Hence

lim
n→∞

sup
x∈RN

∫
BR(x)

|un|p dx = 0

for every R > 0 and p ∈ [2, 2∗). Now the Vanishing Lemma of Lions [31, Lemma I.1]
implies that un → 0 as n→∞ in Lp for every p ∈ (2, 2∗), and so Ψ′(un)[un]→ 0.
For the splitting f = f 1 + f 2 introduced above we easily obtain from (6.2) that

|f i(x, u)|p′i ≤ Cf i(x, u)u

for i = 1, 2. Here p′i denotes the Hölder exponent conjugate to pi. Therefore

‖Ψ′(u)‖E∗ ≤ C
(√

Ψ′(u)u+ Ψ′(u)u
)

and (F5.3) is satisfied.
It remains to prove (F5.4). First note that for a, b, c ∈ R with a, c ≥ 0 we have the

implications

b2 ≤ ac ⇒ a+ 2b+ c ≥ 0(6.3)
b2 < ac ⇒ a+ 2b+ c > 0 .(6.4)

Consider some fixed x in RN and u, v ∈ R. For convenience set f := f(x, u), f ′ :=
fu(x, u) and g := (f ′u2 − fu) + 2(f ′u − f)v + f ′v2. Then u = 0 implies g = 0, and
u 6= 0 and v = 0 implies g > 0 by (A1.4). If u, v 6= 0 we find from (A1.4) that f/u > 0.
Together with (A1.4) again this implies (f ′u−f)2v2 < (f ′u2−fu)f ′v2, and hence g > 0
by (6.4). All in all we see that g ≥ 0, g > 0 if u 6= 0, and therefore, if u ∈ E r {0} and
v ∈ E, we have(

Ψ′′(u)[u, u]−Ψ′(u)u
)

+ 2
(
Ψ′′(u)[u, v]−Ψ′(u)v

)
+ Ψ′′(u)[v, v]

=
∫
RN

(
(f ′u2 − fu) + 2(f ′u− f)v + f ′v2

)
> 0 .

Having proved all the necessary assumptions on Φ, Theorem 1.2 for (L) is a conse-
quence of Theorem 3.4, Proposition 4.1 and Theorem 5.1.
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6.5. The Nonlocal Equation

In the setting of the nonlocal equation we assume conditions (A1.5)–(A1.7) and define
Ψ: E → R by

Ψ(u) := 1
4

∫
R3

(W ∗ u2)u2 dx .

To facilitate the calculations, we introduce the bilinear expression

I(u, v) :=
∫
RN

(W ∗ u)v dx

for appropriate measurable functions u, v on RN . It is symmetric since W is even. Then
for u, v ∈ E:

Ψ(u) = 1
4I(u2, u2)(6.5)

Ψ′(u)v = I(u2, uv)(6.6)
Ψ′′(u)[v, w] = 2I(uv, uw) + I(u2, vw)(6.7)
I(u2, u2) > 0 if u 6= 0, by (A1.6)(6.8)
I(u, v) ≥ 0 if u, v ≥ 0, since W ≥ 0(6.9)

Combining Lemmata 6.1, 6.2 and 6.3 it is not difficult to prove properties (F3.1)–
(F3.5), (F4.1)–(F4.4), and (F5.2) similarly as in Section 6.4. To prove the BL-splitting
property for Ψ′′ one can apply Lemma 5.3.
Conditions (F5.1)–(F5.4) need only be shown if σ(T ) ∩ R− 6= ∅, since otherwise the

results from Section 4 apply. Therefore assume that W is positive definite (see (A1.7)).
For appropriate measurable functions u, v on RN it holds that

I(u, u) ≥ 0 since W is positive definite(6.10)

|I(u, v)| ≤
√
I(u, u)

√
I(v, v) by (6.10) .(6.11)

For all u, v ∈ E it follows that

Ψ′′(u)[v, v] = 2I(uv, uv) + I(u2, v2) ≥ 0

from (6.9) and (6.10). Hence Ψ is convex and (F5.1) is satisfied. The proof of (F5.3)
can be found in [1, Lemma 3.6].
To see that (F5.4) holds, consider u in E r {0} and v in E. Then(
Ψ′′(u)[u, u]−Ψ′(u)u

)
+ 2

(
Ψ′′(u)[u, v]−Ψ′(u)v

)
+ Ψ′′(u)[v, v]

= 2I(u2, u2) + 4I(u2, uv) + 2I(uv, uv) + I(u2, v2)

> I(u2, (u+ v)2) + 1
2I(u2, u2) + 2I(u2, uv) + 2I(uv, uv) by (6.8)

≥ 1
2I(u2, u2) + 2I(u2, uv) + 2I(uv, uv) by (6.9)

≥ 1
2I(u2, u2)− 2

√
I(u2, u2)

√
I(uv, uv) + 2I(uv, uv) by (6.11)

≥ 0 by (6.3).
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As in Section 6.4 Theorem 1.2 now follows for equation (NL) from the results in
Sections 3, 4 and 5.
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? 4, 12 Λ 13
Ã 22 M 17, 18
A(n) 19 n0 22
cmin 4, 26 P± 28
δ 21 Φ 3, 3, 13, 26, 28
E 3, 3, 12 Φr 29
E± 28 Ψ 13
ηa,n 19 Ψr 29
Fn 19 ϕu 31
fn 20 QVn 21
G 12 QWn 21
Γ 13 R 16
Γr 29 Ra 16
Ga,n 19 r1 19
ga,n 20 r2 19
H 23 r3 21
h 29 rdegloc 8
(K) 29 Σ(a) 16
K 16 � 12
Ka 16 u± 28
K(u) 32 ua 16
K 4 Vn 20
Kc 4 Wn 20
Kdc 4 Xa,n 18
K(c) 4 Xn 18
κ 28 Ya,n 18
κn 19 Yn 18
L 13, 26, 28 Zn 20

Table 1: List of extra Notation used in Sections 2–5
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