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We are concerned with the properties of weak solutions of the stationary
Schrödinger equation −∆u + V u = f(u), u ∈ H1(RN) ∩ L∞(RN), where V is
Hölder continuous and inf V > 0. Assuming f to be continuous and bounded
near 0 by a power function with exponent larger than 1 we provide precise
decay estimates at infinity for solutions in terms of Green’s function of the
Schrödinger operator. In some cases this improves known theorems on the
decay of solutions. If f is also real analytic on (0,∞) we obtain that the set
of positive solutions is locally path connected. For a periodic potential V this
implies that the standard variational functional has discrete critical values in
the low energy range and that a compact isolated set of positive solutions exists,
under additional assumptions.

1 Introduction
We are interested in the properties of weak solutions of

(P) −∆u+ V u = f(u), u ∈ H1(RN) ∩ L∞(RN),

where f is continuous, f(u) ≤ C|u|q near 0, for some q > 1, V is Hölder continuous,
bounded, and µ0 := inf V > 0.
In the first part of this work we consider exponential decay of solutions of (P).

We say that a function u decays exponentially at infinity with exponent ν > 0 if
lim sup|x|→∞ eν|x|u(x) <∞.
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One of the most thorough studies of this question is an article by Rabier and Stuart [17],
where general quasilinear equations are considered. We give a more precise description of
the decay of such solutions u in terms of Green’s function G of the Schrödinger operator
−∆+V . Setting H(x) := G(x, 0) we show that u is bounded above by a multiple of H near
infinity. In particular, u decays as fast as H. In some cases this improves the estimates
obtained in [17]. To illustrate this, suppose for a moment that V is a positive constant µ0.
Since H decays exponentially at infinity with exponent √µ0, our result yields the same for
every solution of (P), while [17] only yields exponential decay at infinity with exponent ν
for every ν ∈ (0,√µ0). Their method could be extended to yield the same result only if
f(u)/u ≤ 0 near 0.
On the other hand, if u is a positive solution of (P) then we obtain that u is bounded

below by a multiple of H, that is to say, the decay of u and H are comparable. We are not
aware of a similar result in the literature.
These comparison results are a consequence of a priori exponential decay of every so-

lution of (P), of the behavior of f near 0 and of a deep result of Ancona [5] about the
comparison of Green’s functions for positive Schrödinger operators whose potentials only
differ by a function that decays sufficiently fast at infinity.
In the second part of our paper we assume in addition that f is a real analytic function,

either on all of R or solely on (0,∞). In the complete text analyticity is always real
analyticity. We have used analyticity before to obtain results on the path connectivity
of bifurcation branches and solutions sets [8–10]. Set F (u) :=

∫ u
0 f and introduce the

variational functional

J(u) := 1
2

∫
RN

(|∇u|2 + V u2)−
∫
RN
F (u)

for weakly differentiable functions u : RN → R such that the integrals are well defined. If
K is the set of solutions of (P) and K+ the set of positive solutions of (P) then we show
that the analyticity of f implies local path connectedness of K in the first case and of
K+ in the second case. Moreover, it follows that J is locally constant on K, respectively
K+. We achieve this by working in spaces of continuous functions with norms weighted at
infinity by powers of H. As a consequence, the set K+ lies in the interior of the positive
cone of a related weighted space. This allows to transfer the analyticity from f to the set
K+ in the case where f is only analytic in (0,∞). From the analyticity of a set its local
path connectedness follows from a classical triangulation theorem [12,14].
In the last part we apply these results to a special case of (P), where we assume V to

be periodic in the coordinates. Set c0 := inf J(K) > 0, the ground state energy. Under
additional growth assumptions on f we obtain that J(K), respectively J(K+), has no
accumulation point in the so called low energy range [c0, 2c0). If in addition V is reflection
symmetric and f satisfies an Ambrosetti-Rabinowitz-like condition, an earlier separation
Theorem of ours [1] yields, together with the aforementioned conclusion, the existence of
a compact set Λ of positive solutions at the ground state energy that is isolated in the set
of solutions K.
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The latter result is of interest when one considers the existence of so-called multibump
solutions, which are nonlinear superpositions of translates of solutions in the case of a
periodic potential V . It is to be expected that such a set Λ can be used as a base for
nonlinear superposition. This would yield a much weaker condition than that imposed
in the seminal article [7] and its follow-up works, where the existence of a single isolated
solution was required.
The present article is structured as follows: In section 2 we study the exact decay of

solutions at infinity in terms of Green’s function of the Schrödinger operator. Section 3 is
devoted to the consequences of analyticity of f . And last but not least, Section 4 treats
the consequences for the solution set of (P) if the potential V is periodic.

1.1 Notation
For a metric space (X, d), r > 0, and x ∈ X we denote

Br(x;X) := {y ∈ X | d(x, y) < r},
Br(x;X) := {y ∈ X | d(x, y) ≤ r},
Sr(x;X) := {y ∈ X | d(x, y) = r}.

We also set BrX := Br(0;X) if X is a normed space and use analogous notation for the
closed ball and the sphere. If X is clear from context we may omit it in the notation. For
k ∈ N0 denote by Ck

b(RN) the space of real valued functions of class Ck on RN such that
all derivatives up to order k are bounded. We set Cb(RN) := C0

b(RN).

2 Exact Decay of Solutions
This section is concerned with comparing the decay of a solution to (P) with Green’s
function of the Schrödinger operator T := −∆ + V . We show that if the nonlinearity f is
well behaved at 0 then a solution decays at least as fast as Green’s function. If in addition
the solution is positive then it decays at most as fast as Green’s function.
Suppose that N ∈ N. The principal regularity and positivity requirements for the

potential we use are contained in the following condition:

(V1) V : R→ R is Hölder continuous and bounded, and µ0 := inf V > 0.

We will need to know a priori that weak solutions of (P) and related problems decay
exponentially at infinity. For easier reference we include a pertinent result here, even
though this fact is in principle well known.

Lemma 2.1. Assume (V1). Suppose that f ∈ C(R) satisfies f(u) = o(u) as u → 0 and
that v ∈ L∞(RN) decays exponentially at infinity. If either u ∈ H1(RN) ∩ L∞(RN) is a
weak solution of −∆u + V u = f(u) or u ∈ H1(RN) is a weak solution of −∆u + V u = v
then u is continuous and decays exponentially at infinity.
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Proof. In the first case we may alter f outside of the range of u in any way we like.
Therefore [2, Lemma 5.3] applies and yields, together with standard regularity theory and
bootstrap arguments using a priori estimates (e.g., [13], Theorem 9.11 and Lemma 9.16),
that u is continuous and decays exponentially at infinity.
For the second case suppose that |v(x)| ≤ C1e−C2|x| for all x ∈ RN , with constants

C1, C2 > 0. For r > 0 denote

Q(r) :=
∫
RN\Br

(|∇u|2 + V u2).

We claim that Q(r) decays exponentially at infinity. By contradiction we assume that this
were not the case. Then

(2.1) inf
r≥0

eC2rQ(r) > 0.

For r ≥ 0 define the cutoff function ζr as in the proof of [2, Lemma 5.3] and set ur(x) :=
ζ(|x| − r)u(x). Let δ := µ0. It follows from Hölder’s inequality and (2.1) that∣∣∣∣∫

RN
∇u∇ur + V uur

∣∣∣∣ =
∣∣∣∣∫

RN
vur

∣∣∣∣ ≤ C1

∫
RN\Br

e−C2|x||u(x)| dx

≤ C
√
Q(r)e−C2r ≤ CQ(r)e−C2r/2 ≤ δ

2Q(r)

for r large enough. This replaces Equation 5.3 of [2]. As in that proof it follows that

Q(r + 1)
Q(r) ≤ 1 + δ

1 + 2δ < 1

for large r, so Q(r) decays exponentially at infinity. Again using standard regularity
estimates we obtain that u is continuous and decays exponentially at infinity.

By [16, Theorem 4.3.3(iii)] the operator T is subcritical, according to the definition in
Sect. 4.3 loc. cit. Hence T possesses a Green’s function G(x, y), i.e., a function that satisfies

TG(x, y) = δ(x− y).

Moreover, G is positive. Denote H(x) := G(x, 0) for x 6= 0. We collect some properties of
H needed later on:

Lemma 2.2. The function H : RN\{0} → R satisfies:

(a) TH ≡ 0;

(b) H ∈ C2(RN\{0});

(c) H > 0;
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(d) lim infx→0 H(x) > 0;

(e) lim sup|x|→∞ e
√
µ0 |x|H(x) <∞.

Proof. (a) and (b) are proved in [16, Theorem 4.2.5(iii)], (c) is a consequence of G > 0,
and (d) is given by [16, Theorem 4.2.8].
In order to prove (e), consider the function ψ : RN → R given by ψ(x) := e−

√
µ0 |x|.

Then ψ is a supersolution for T on RN\{0}. Take α > 0 large enough such that αψ ≥ H
on S1. Denote Green’s function for T on Bk with Dirichlet boundary conditions by G̃k,
for k ∈ N, and set H̃k := G̃k(·, 0). Then TH̃k ≡ 0 on Bk\{0} and lim|x|→k H̃k(x) = 0,
by [16, Theorem 7.3.2]. Moreover, [16, Theorem 4.3.7] implies that H̃k(x) → H(x) as
k →∞, and (H̃k) is an increasing sequence. It follows that H̃k ≤ αψ on S1 and hence, by
the maximum principle, that H̃k ≤ αψ in Bk\B1 for all k. Therefore, H ≤ αψ on RN\B1
and the claim follows.

We now state the main result of this section:

Theorem 2.3. (a) Suppose that w ∈ L∞(RN) satisfies

|w(x)| ≤ C1e−C2|x|

for x ∈ RN , with some fixed C1, C2 > 0. If u ∈ H1(RN) is a weak solution of

−∆u+ (V − w)u = 0

then there exists, for every δ > 0, some R0 > 0, depending only on δ, N , inf V ,
‖V ‖∞, C1 and C2, such that for every R ≥ R0

(2.2) lim sup
|x|→∞

|u(x)|
H(x) ≤ (1 + δ)2 max

x∈SR

|u(x)|
H(x) .

In particular,

(2.3) lim sup
|x|→∞

e
√
µ0 |x||u(x)| <∞.

(b) If in addition to the hypotheses of (a) u is positive then there exists, for every δ > 0,
some R0 > 0, depending only on δ, N , inf V , ‖V ‖∞, C1 and C2, such that for every
R ≥ R0

(2.4) lim inf
|x|→∞

u(x)
H(x) ≥ (1 + δ)−2 min

x∈SR

u(x)
H(x) .
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(c) If v ∈ L∞(RN) satisfies that v/H decays exponentially at ∞ and if u ∈ H1(RN) is a
weak solution of

−∆u+ V u = v

then there exist continuous functions u1 and u2 such that u = u1 − u2, Tu1 = v+,
Tu2 = v−, and such that for each i = 1, 2 either ui ≡ 0, or ui > 0 and

(2.5) 0 < lim inf
|x|→∞

ui(x)
H(x) ≤ lim sup

|x|→∞

ui(x)
H(x) <∞.

In particular,
lim sup
|x|→∞

|u(x)|
H(x) <∞.

Proof. (a) Standard a priori estimates, as mentioned in the proof of Lemma 2.1, yield
that u ∈ L∞(RN). Hence also wu has exponential decay at infinity and Lemma 2.1 yields
in particular that

(2.6) u(x)→ 0 as |x| → ∞.

We take R > 1 large enough such that

sup|w| ≤ ε0 := µ0

2

in RN\BR−1 and define η : RN → [0, 1] by

η(x) :=


0, |x| ≤ R− 1,
|x| −R + 1, R− 1 ≤ |x| ≤ R,

1, |x| ≥ R.

Then inf(V − ηw) ≥ ε0 > 0. Hence also T1 := −∆ + (V − ηw) is subcritical on RN and
possesses a positive Green’s function G1. Since we are not assuming w to be locally Hölder
continuous, here we refer to [4] and [15] for the existence of the positive Green’s function.
Set H1(x) := G1(x, 0) for x 6= 0. In the notation of [5] use our ε0 and set r0 := 1/4, c0 := 1,
and p := 2N . Note that the bottom of the spectrum of T and T1 as operators in L2 with
domain H2 is greater than or equal to ε0. Denote

C̃ := sup
{
‖v‖LN (Br0 )

∣∣∣ v ∈ L∞(Br0), ‖v‖L∞(Br0 ) = 1
}

and set θ := 1 + C̃(C1 + ‖V ‖∞). Define the decreasing function

ΨR(s) :=

C1e−C2(R−1) 0 ≤ s ≤ R

C1e−C2(s−1) s ≥ R
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so ‖ηw‖L∞(Br0 (y)) ≤ ΨR(|y|) for y ∈ RN . Using these constants, the function ΨR and the
fact that

lim
R→∞

∫ ∞
0

ΨR = 0,

[5, Theorem 1] yields

(2.7) 1
1 + δ

H(x) ≤ H1(x) ≤ (1 + δ)H(x)

for |x| ≥ r0 if R is chosen large enough, only depending on δ, N , inf(V ), ‖V ‖∞, C1 and
C2.
The function H1 is continuous in RN\{0} and satisfies T1H1 ≡ 0 in RN\{0} in the weak

sense. Moreover, T1u ≡ 0 on RN\BR in the weak sense. Set

C3 := (1 + δ)2 max
x∈SR

|u(x)|
H(x)

Then we have by (2.7)

|u| ≤ C3

(1 + δ)2H ≤
C3

1 + δ
H1 on SR.

Note that H1(x)→ 0 as |x| → ∞, by Lemma 2.2(e) and (2.7). Hence (2.6), the maximum
principle for weak supersolutions [13, Theorem 8.1] and again (2.7) yield

|u| ≤ C3

1 + δ
H1 ≤ C3H on R\BR,

that is, (2.2). Together with Lemma 2.2(e) we obtain (2.3).
(b) Define

C4 := (1 + δ)2 max
x∈SR

H(x)
u(x) .

Then (2.7) implies that

H1 ≤ (1 + δ)H ≤ C4

1 + δ
u on SR.

The maximum principle yields

H1 ≤
C4

1 + δ
u on R\BR,

so (2.7) implies (2.4).
(c) The operator T : H2(RN) → L2(RN) has a bounded inverse by (V1). Denote v+ :=
max{0, v} and set v− := v+ − v. Define u1 := T−1v+ ∈ H1(RN) and u2 := T−1v− ∈
H1(RN). Again we find by Lemma 2.1 that

ui(x)→ 0 as |x| → ∞, i = 1, 2.
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If u1 is not the zero function then it is positive, by the strong maximum principle. Using

Tu1 ≥ 0
TH = 0

}
in RN\{0}

the maximum principle yields
0 < lim inf

|x|→∞

u1(x)
H(x) .

Hence also v+/u1 decays exponentially at infinity, and (a) implies that

lim sup
|x|→∞

u1(x)
H(x) <∞.

This yields (2.5) for i = 1. The case i = 2 follows analogously.

For the semilinear problem (P) we obtain:

Corollary 2.4. Assume (V1). Suppose that f : R → R is continuous and that there are
C,M > 0 and q > 1 such that |f(u)| ≤ C|u|q for |u| ≤ M . If u is a weak solution of (P)
then u has the properties claimed in Theorem 2.3, (a) and (c). If in addition u is positive,
then u has the property claimed in Theorem 2.3(b).

Proof. By our hypotheses on f Lemma 2.1 implies exponential decay of u at infinity. Hence
also w := f(u)/u decays exponentially at infinity. Since u is a solution of −∆u+(V −w)u =
0 Theorem 2.3(a) applies. Therefore also f(u)/H has exponential decay at infinity. These
facts yield the claims.

3 Real Analyticity
Using the precise decay results of the previous section we construct a weighted space Y
of continuous functions that contains all solutions of (P) and is such that the positive
solutions are contained in the interior of the positive cone of Y . Assuming analyticity of
the nonlinearity (on (0,∞)) with appropriate growth bounds we obtain a setting where
the (positive) solution set is locally a finite dimensional analytic set and hence locally path
connected.
Denote 2∗ := ∞ if N = 1 or 2, 2∗ := 2N/(N − 2) if N ≥ 3 and consider the following

conditions on f :

(F1) f ∈ C1(R), f(0) = f ′(0) = 0;

(F2) f is analytic in R and for every M > 0 there are numbers ak ∈ R (k ∈ N0) such that

lim sup
k→∞

ak
k! <∞
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and
|f (k)(u)| ≤ ak|u|max{0,2−k}

for |u| ≤M and k ∈ N0.

(F3) f is analytic in R+ and for everyM > 0 there are numbers p ∈ (1, 2∗−1) and ak ∈ R
(k ∈ N0) such that

lim sup
k→∞

ak
k! <∞

and
|f (k)(u)| ≤ ak|u|p−k

for u ∈ (0,M ] and k ∈ N0; in this case we are only interested in positive solutions of
(P) and may take f to be odd, for notational convenience.

(F4) There are C > 0 and q̃ ∈ (1, 2∗ − 1) such that |f(u)| ≤ C(1 + |u|q̃) for all u ∈ R.

To give a trivial example of a function satisfying these conditions, take p as in condition
(F3). Then f(u) := |u|p−1u satisfies conditions (F1), (F3) and (F4).
If either (F2) or (F3) holds true, then there is q > 1 such that for every M > 0 there

are a0, a1 ∈ R such that

(3.1) |f(u)| ≤ a0|u|q and |f ′(u)| ≤ a1|u|q−1 if |u| ≤M.

To see this take q := 2 if (F2) holds true, take q := p if (F3) holds true, and use the
respective numbers a0 and a1 given for M by these hypotheses.
Denote byK the set of non-zero solutions of (P) and setK+ := {u ∈ K | u ≥ 0}. Denote

by F the superposition operator induced by f . Then every u ∈ K satisfies Tu = F(u).
Our goal is to produce a Banach space Y such that

Γ: Y → Y

u 7→ u− T−1F(u)

is well defined and such that K ⊆ Y is the zero set of Γ. Moreover, we need Γ to be
a Fredholm map, analytic in a neighborhood of K if (F2) holds true, and analytic in a
neighborhood of K+ if (F3) holds true. In the latter case, because f is not analytic at 0
we need that K+ belongs to the interior of the positive cone of Y .
Consider the function H defined in Section 2. Pick a number b0 ∈ (0,∞) such that

b0 ≤ lim infx→0 H(x). By Lemma 2.2 the function ϕ : RN → RN defined by

ϕ(x) := min{b0, H(x)}

is continuous, positive, and has the same decay at infinity as H. Define the spaces

Xα :=
{
u ∈ C(RN)

∣∣∣∣∣ ‖u‖Xα := sup
x∈RN

∣∣∣∣∣ u(x)
ϕ(x)α

∣∣∣∣∣ <∞
}
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for α > 0. Together with its weighted norm ‖ · ‖Xα , Xα is a Banach space. Set

Y := X1 ∩ C1
b(RN) ∩H1(RN)

and ‖·‖Y := ‖·‖X1 + ‖·‖C1
b

+ ‖·‖H1 . By (3.1) and Corollary 2.4 K ⊆ Y .
We prove the basic properties of the space Y and related mapping properties of the maps

T and F :

Lemma 3.1. Suppose that (V1), (F1) and one of (F2) or (F3) are satisfied. Then the
following hold true:

(a) T−1 : Xα → Y is well defined and continuous if α > 1.

(b) Let q be given by (3.1). If α < min{2, q} then F(Y ) ⊆ Xα, and F : Y → Xα is
completely continuous, i.e., it is continuous and maps bounded sets into relatively
compact sets. Moreover, it is continuously differentiable in Y .

(c) The set K+ is contained in the interior of the positive cone of Y .

(d) If (F4) is satisfied then on K the H1-topology and the Y -topology coincide.

Proof. (a): For any s ≥ 2 the linear mapping T−1 : Ls(RN) → W 2,s(RN) is well defined
and continuous because of (V1). If v ∈ Xα ⊆ Ls(Ω) then by the definition of Xα and by
Lemma 2.2(e) the function v/H decays exponentially at infinity. For u := T−1v it follows
from Theorem 2.3(c) that u ∈ X1. Therefore

X1 Ls

Xα Ls

T−1 T−1

is a commuting diagram of linear maps between Banach spaces, where the inclusions and
the map T−1 : Ls → Ls are continuous. By the closed graph theorem also T−1 : Xα → X1
is continuous. Moreover, if s > N we have continuous maps

Xα ↪→ Ls
T−1
−−→ W 2,s ↪→ C1

b

so T−1 : Xα → C1
b is continuous. Similarly,

Xα ↪→ L2 T−1
−−→ H2 ↪→ H1

and therefore T−1 : Xα → H1 is continuous. All in all we have proved (a).
(b): Note that F(u) ∈ Xq ⊆ Xα if u ∈ X1, by (3.1). To see the continuous differentia-

bility of F in Y , note that f ′ is locally Hölder (respectively Lipschitz) continuous in R with
exponent β := min{1, q−1}, as a consequence of (F2) or (F3), respectively. In what follows
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we repeatedly pick arbitrary u, v, w ∈ X1 and C > 0 such that |f ′(s) − f ′(t)| ≤ C|s − t|β
for all s, t ∈ R with |s|, |t| ≤ ‖u‖∞ + ‖v‖∞. Define F1 to be the superposition operator
induced by f ′. First we show that F1(u) ∈ L(X1, Xα) as a multiplication operator and
that F1 : X1 → L(X1, Xα) is continuous. Pick a1 in (3.1) for M := ‖u‖∞. Then we find

‖F1(u)w‖Xα ≤ a1‖ϕq−α‖∞‖u‖q−1
X1 ‖w‖X1

with ‖ϕq−α‖∞ <∞ since α < q. Hence F1(u) ∈ L(X1, Xα). Similarly,

‖(F1(u)−F1(v))w‖Xα ≤ C‖ϕβ+1−α‖∞‖u− v‖βX1‖w‖X1

with ‖ϕβ+1−α‖∞ <∞ since α < β + 1. Hence

‖F1(u)−F1(v)‖L(X1,Xα) ≤ C‖ϕβ+1−α‖∞‖u− v‖βX1

and F1 is Hölder continuous. For any x ∈ RN and t ∈ R\{0} there is θx,t ∈ (−|t|, |t|) such
that∣∣∣∣∣f(u(x) + tv(x))− f(u(x))

t
− f ′(u(x))v(x)

∣∣∣∣∣ = |f ′(u(x) + θx,tv(x))− f ′(u(x))| |v(x)|

≤ C|θx,tv(x)|β|v(x)| ≤ C|v(x)|β+1|t|β.

It follows that ∥∥∥∥∥F(u+ tv)−F(u)
t

−F1(u)v
∥∥∥∥∥
Xα

≤ C‖ϕβ+1−α‖∞‖v‖β+1
X1 |t|

β

and hence that F is Gâteaux differentiable in u with derivative F1(u). Since F1 is con-
tinuous, F is continuously Fréchet differentiable as a map X1 7→ Xα, and thus Y ↪→ X1
implies continuous differentiability of F : Y → Xα.
Suppose now that (un) ⊆ Y is bounded in Y and hence bounded in X1 and C1

b(RN).
Passing to a subsequence we can suppose by Arzelà-Ascoli’s theorem that (un) converges
locally uniformly in RN to some u ∈ Cb(RN). Since f is uniformly continuous on compact
intervals, F(un) converges to F(u) locally uniformly in RN . There is C > 0 such that

(3.2) u, un ≤ Cϕ in RN , for all n ∈ N.

For any ε > 0 (3.1) and (3.2) imply that there are a constant R > 0, constants C > 0, and
n0 ∈ N such that for all n ≥ n0 it holds true that

|F(un)|
ϕα

≤ Cϕq−α ≤ ε

3 in RN\BR,

|F(u)|
ϕα

≤ Cϕq−α ≤ ε

3 in RN\BR,
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and
|F(un)−F(u)|

ϕα
≤ C‖F(un)−F(u)‖∞ ≤

ε

3 in BR.

It follows for n ≥ n0 that

‖F(un)−F(u)‖Xα ≤ sup
BR

|F(un)−F(u)|
ϕα

+ sup
RN\BR

|F(un)|+ |F(u)|
ϕα

≤ ε

and hence F(un)→ F(u) inXα. This proves that F maps bounded sets in Y into relatively
compact sets in Xα. Since F is differentiable, it is completely continuous.

(c): Fix u ∈ K+. By Corollary 2.4 there is C1 > 0 such that C1ϕ ≤ u in RN . For any
v ∈ Y such that ‖u− v‖Y ≤ C1/2 it follows that ‖u− v‖X1 ≤ C1/2 and hence

v ≥ u− |u− v| ≥ C1ϕ

2 > 0

in RN . Therefore, u lies in the interior of the positive cone of Y .
(d): It suffices to prove that on K the H1-topology is finer than the Y -topology. There-

fore, assume that un → u in K with respect to the H1-topology and suppose by contradic-
tion that un 6→ u in Y . Passing to a subsequence we can assume that there is δ > 0 such
that

(3.3) ‖un − u‖Y ≥ δ for all n ∈ N.

By (F4) and standard elliptic regularity estimates, (un) is bounded in C1
b(RN). Moreover,

the proof of [2, Prop. 5.2] yields, together with regularity estimates, that the functions
un have a uniform pointwise exponential decay as |x| → ∞. In view of (3.1) we obtain
C1, C2 > 0 such that

f(un(x))
un(x) ≤ C1e−C2|x| for x ∈ RN , n ∈ N.

By Theorem 2.3(a) (un) also remains bounded in X1 and hence in Y . Pick some α ∈
(1,min{2, q}). By (a) and (b), and passing to a subsequence, (T−1F(un)) converges in Y .
Since un = T−1F(un), un → v in Y , for some v ∈ Y , and v = u since Y ↪→ H1 and un → u
in H1. Hence un → u in Y for this subsequence, contradicting (3.3) and thus finishing the
proof of (d).

If (F1) is satisfied then J , as defined in the introduction, is well defined on Y . The main
result of this section is the following

Theorem 3.2. Assume that (V1) and (F1) hold true.

(a) If (F2) is satisfied then K is Y -locally path connected, and J is Y -locally constant
on K.
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(b) If (F3) is satisfied then K+ is Y -locally path connected, and J is Y -locally constant
on K+.

Proof. We prove the two statements in parallel. Fix α ∈ (1,min{2, q}), where q is taken
from (3.1). For (a) fix u ∈ K, and for (b) fix u ∈ K+. Set M := ‖u‖∞ and let the numbers
ak be given by (F2) or (F3), respectively.
Denote by Lk(X1, Xα) the Banach space of k-linear bounded maps from X1 into Xα, for

k ∈ N0 (for k = 0 we set Lk(X1, Xα) := Xα). For k = 0 and k = 1 we already know that
f (k)(u) generates an element of Lk(X1, Xα) by multiplication by Lemma 3.1(b). We claim
that

fk(u) generates an element Ak of Lk(X1, Xα) by multiplication, for every
k ∈ N0,

(3.4)

r1 :=
(

lim sup
k→∞

‖Ak‖1/k
Lk(X1,Xα)

)−1

> 0,(3.5)

and

∃r2 ∈ (0, r1] ∀h ∈ Br2X1 ∀x ∈ RN : f(u(x) + h(x)) =
∞∑
k=0

f (k)(u(x))
k! h(x)k.(3.6)

To prove the claims in case (a), denote by r0 the convergence radius of the power series∑∞
0

ak
k! z

k. Consider k ∈ N, k ≥ 2. Taking into account that α < 2 we obtain from (F2)
that ∥∥∥∥∥f (k)(u)

k! hk
∥∥∥∥∥
Xα

≤ ak
k! sup

x∈RN

∣∣∣∣∣ h(x)k
ϕ(x)α

∣∣∣∣∣ ≤ ak
k! ‖ϕ‖

k−α
∞ ‖h‖kX1 .

Hence (3.4) is true, with
‖Ak‖Lk(X1,Xα) ≤

ak
k! ‖ϕ‖

k−α
∞ .

Again by (F2), (3.5) is satisfied, and

r2 := r0

‖ϕ‖∞
≤ r1.

Suppose now that h ∈ Br2X1 and x ∈ RN . Then u(x) ∈ [−M,M ] and hence by (F2)
(

lim sup
k→∞

∣∣∣∣∣f (k)(u(x))
k!

∣∣∣∣∣
)−1

≥ r0.

Moreover, |h(x)| < r2ϕ(x) ≤ r0. Since f is analytic, (3.6) follows.
To prove the claims in case (b), denote again by r0 the convergence radius of the power

series ∑∞0 ak
k! z

k. By Corollary 2.4 there are C1, C2 > 0 such that

(3.7) C1ϕ ≤ u ≤ C2ϕ.
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Suppose first that k ∈ N, 2 ≤ k ≤ p. Taking into account that α < q we obtain from (F3)∥∥∥∥∥f (k)(u)
k! hk

∥∥∥∥∥
Xα

≤ ak
k! sup

x∈RN
|u(x)|q−k

∣∣∣∣∣ h(x)k
ϕ(x)α

∣∣∣∣∣ ≤ ak
k! ‖ϕ

q−α‖∞Cq−k
2 ‖h‖kX1 .

If k > q then we find∥∥∥∥∥f (k)(u)
k! hk

∥∥∥∥∥
Xα

≤ ak
k! sup

x∈RN
|u(x)|q−k

∣∣∣∣∣ h(x)k
ϕ(x)α

∣∣∣∣∣ ≤ ak
k! ‖ϕ

q−α‖∞Cq−k
1 ‖h‖kX1 .

Hence (3.4) is true, with

‖Ak‖Lk(X1,Xα) ≤
ak
k! ‖ϕ

p−α‖∞Cq−k
1

for k > p. Again by (F3), (3.5) is satisfied, and

r2 := C1 min
{
r0,

1
2

}
≤ r1.

Suppose now that h ∈ Br2X1 and x ∈ RN . Then u(x) ∈ (0,M ] and hence by (F3)
(

lim sup
k→∞

∣∣∣∣∣f (k)(u(x))
k!

∣∣∣∣∣
)−1

≥ r0u(x).

Moreover, |h(x)| < r2ϕ(x) ≤ C1r0ϕ(x) ≤ r0u(x), by (3.7), and hence u(x) + h(x) ≥
(C1 − r2)ϕ(x) > 0. Since f is analytic in (0,∞), (3.6) follows.
For any h ∈ X1 such that ‖h‖X1 < r2 we obtain from (3.5) and r2 ≤ r1 that

(3.8)
∞∑
k=0

Ak[hk] converges in Xα.

Note that Xα embeds continuously in Cb(RN) and that therefore the evaluation Ex at a
point x ∈ RN is a bounded linear operator on Xα. Hence for every x ∈ RN

F(u+ h)(x) = f(u(x) + h(x))

=
∞∑
k=0

f (k)(u(x))
k! h(x)k by (3.6)

=
∞∑
k=0

Ex
[
Ak[hk]

]
by (3.4)

= Ex

[ ∞∑
k=0

Ak[hk]
]

by (3.8) and Ex ∈ L(Xα,R)
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and therefore

(3.9) F(u+ h) =
∞∑
k=0

Ak[hk], for all h ∈ Br2X1.

By [3, Theorem 6.2] the map F is analytic in Br2X1. Since u ∈ K(+) was arbitrary,
F : X1 → Xα is analytic in a neighborhood of K(+). And since Y ↪→ X1 and bounded
linear operators are analytic, also F : Y → Xα is analytic in a neighborhood of K(+),
c.f. [6, Theorem 7.3].
From the results above we conclude that Γ: Y → Y is analytic in a neighborhood ofK(+).

Moreover, by Lemma 3.1(a) Γ is continuously differentiable in Y , and by Lemma 3.1(b)
and [11, Proposition 8.2], for every v ∈ Y the operator F ′(v) ∈ L(Y,Xα) is compact.
Hence for every v ∈ Y the operator Γ′(v) is of the form identity minus compact and thus
a Fredholm operator of index 0. In short, one calls the map Γ a Fredholm map of index 0.
Recall that K = Γ−1(0). By Lemma 3.1(c) K+ is the set of zeros of Γ in an open

neighborhood of u. In any case, the implicit function theorem shows that there are an open
neighborhood U of u in Y and a C∞-manifold M ⊆ Y of finite dimension dimN (Γ′(u))
such that K ∩ U ⊆M . In fact, by [6, Theorem 7.5] (see also Corollary 7.3 loc. cit.), M is
the graph of a analytic map defined on a neighborhood of u in u + N (Γ′(u)). Moreover,
K ∩ U is the set of zeros of the restriction of the finite dimensional analytic map PΓ to
M . Here P ∈ L(Y ) denotes the projection with kernel R(Γ′(u)) and range N (Γ′(u)).
Therefore, [14, Theorem 2] applies and yields a triangulation of K ∩ U by homeomorphic
images of simplexes such that their interior is mapped analytically (see also [12, Satz 4]).
This implies that K(+) is locally path connected by piecewise continuously differentiable
arcs. Similarly as in the proof of Lemma 3.1 it can be shown that the map Y → R,
u 7→

∫
F (u) is continuously differentiable. Hence also J is continuously differentiable in Y

and therefore locally constant on K(+).

4 Applications to Periodic Potentials
Returning to our main motivation we consider the variational setting inH1(RN). Assuming
(V1), (F1), and (F4) the functional J is of class C1 on H1(RN), and solutions of (P) are
in correspondence with critical points of J . Denoting c0 := inf J(K) it is easy to see that
c0 > 0 if K 6= ∅.
To inspect the behavior of J on K we will need the following boundedness condition:

(F5) Every sequence (un) ⊆ K such that lim supn→∞ J(un) < 2c0 is bounded.

It is satisfied, for example, under the classical Ambrosetti-Rabinowitz condition. Alterna-
tively, one could use a set of conditions as in [18].
For our purpose we also consider the periodicity condition

(V2) V is 1-periodic in all coordinates.
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By concentration compactness arguments c0 is achieved if (V1), (V2), (F1), (F4) and (F5)
hold true and if K 6= ∅.
The local path connectedness of the set of (positive) solutions of (P) when f is analytic

has a consequence on the possible critical levels of J :

Theorem 4.1. Assume (V1), (V2), (F1), (F4) and (F5).

(a) If (F2) is satisfied, then J(K) has no accumulation point in [c0, 2c0).

(b) If (F3) is satisfied, then J(K+) has no accumulation point in [c0, 2c0).

Proof. We only prove (a) since the other claim is proved analogously. Assume by con-
tradiction that J(K) contains an accumulation point c ∈ [c0, 2c0). We work entirely in
the H1-topology, which coincides with the Y -topology on K by Lemma 3.1(d). There is
a sequence (un) ⊆ K such that J(un) 6= c and J(un) → c. A standard argument using
the splitting lemma [2, Proposition 2.5] yields, after passing to a subsequence, a translated
sequence (vn) ⊆ K and v ∈ K such that vn → v, J(vn) = J(un) 6= c and J(v) = c. Since
J is locally constant on K by Theorem 3.2(a) we reach a contradiction.

We now combine this property with the separation property obtained in [1] to show the
existence of compact isolated sets of solutions. For any c ∈ R denote

Kc
+ := {u ∈ K+ | J(u) ≤ c}.

The result reads:

Corollary 4.2. In the situation of Theorem 4.1(b), assume in addition that V is of class
C1,1, that V is even in every coordinate xi, and that there is θ > 2 such that

f ′(u)u2 ≥ (θ − 1)f(u)u for u ∈ R\{0}.

Suppose that for every u ∈ Kc0
+ that is even in xi for some i ∈ {1, 2, . . . , N} it holds true

that ∫
RN
u2∂2

i V ≤ 0.

(Here we use the weak second derivative of V . It exists because V ′ is Lipschitz continuous.)
Then K+ 6= ∅ and there exists a compact subset Λ of Kc0

+ that is isolated in K, i.e., that
satisfies dist(Λ, K\Λ) > 0 in the H1-metric.

Proof. By [1, Theorem 1.1] there is a compact subset Λ of Kc0
+ such that

Kc0
+ = ZN ? Λ and Λ ∩

(
ZN\{0}

)
? Λ = ∅.

Here ? denotes the action of ZN on functions on RN by translation: a ? u := u(· − a). It
follows easily that

(4.1) dist(Λ, Kc0
+ \Λ) > 0.

16



We claim that dist(Λ, K\Λ) > 0. Recall that the topologies of the space Y from Section 3
and the H1-topology coincide on K and that K+ is contained in the interior of the positive
cone of Y , by Lemma 3.1(d) and (c). Hence dist(Λ, K\K+) > 0. It remains to show
that dist(Λ, K+\Λ) > 0. Assume by contradiction that this were not the case. Since Λ
is compact there would exist a sequence (un) ⊆ K+\Λ and u ∈ Λ such that un → u.
Since c0 is not an accumulation point of J(K+) by Theorem 4.1(b), (un) ⊆ Kc0

+ . But this
contradicts (4.1), proving the claim.

Note that in [1] we show how to construct concrete examples that satisfy the conditions
of Corollary 4.2.
Acknowledgements. We would like to thank Jawad Snoussi for drawing our attention to
the references [12, 14].
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