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Abstract. Let M be a smooth k-dimensional closed submanifold of RN , N ≥ 2,

and let ΩR be the open tubular neighborhood of radius 1 of the expanded manifold

MR := {Rx : x ∈ M}. For R sufficiently large we show the existence of positive

multibump solutions to the problem

−∆u+ λu = f(u) in ΩR, u = 0 on ∂ΩR.

The function f is superlinear and subcritical, and λ > −λ1, where λ1 is the first

Dirichlet eigenvalue of −∆ in the unit ball in RN−k.

1. Introduction

Let M be a compact k-dimensional smooth submanifold of RN without boundary,
1 ≤ k ≤ N − 1, N ≥ 2. For R > 0 define

ΩR :=
⋃
x∈M

{
Rx+ v : v ∈ (TxM)⊥ , |v| < 1

}
,

where TxM is the tangent space of M at x, and (TxM)⊥ is its orthogonal complement
in RN . Thus, for R large enough, ΩR is the open tubular neighborhood of radius 1
of the expanded manifold MR := {Rx : x ∈M}.

We consider the problem{
−∆u+ λu = f(u) in ΩR,

u = 0 on ∂ΩR,
(1.1)

for λ > −λ1, where λ1 is the first Dirichlet eigenvalue of −∆ in the unit ball in
RN−k.

Equation (1.1) appears in nonlinear optics and models standing waves in optical
waveguides. The most interesting variant for applications that aspire to exploit the
nonlinear properties of the material is the self-focusing case where f(u)/u → ∞ as
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|u| → ∞. A typical example is given by f(u) = u3, modelling Kerr’s effect. For more
information on the physical background see for example [13].

Geometrically, if k = 1 then ΩR is a tubular guide, i.e., an optical fiber. If k ≥ 2
then we say that ΩR is a slab, or, more specifically, a shell if k = N − 1.

For expanding annular shells, i.e., tubular neighborhoods of expanding spheres,
there is a considerable body of existence results for multiple solutions that are sym-
metric with respect to some subgroup of O(N), cf. [4–6,10–12,14]. The first existence
result for multiple solutions we are aware of that does not depend on symmetries of
the domain was given by Dancer and Yan [8] for expanding shells that bound convex
domains, in the case of λ = 0.

Inspired by the article of Dancer and Yan we are interested in finding positive
multibump solutions to (1.1) for large R, extending their result to more general
domains and to the case of λ 6= 0.

Set pS :=∞ if N = 1, 2 and pS := (N + 2)/(N − 2) if N ≥ 3, and consider the
following hypotheses on f :

(H1) f ∈ C1[0,∞) ∩ C3(0,∞);
(H2) there are C > 0 and p1, p2 ∈ (1, pS) such that p1 ≤ p2 and

|f (k)(u)| ≤ C(|u|p1−k + |u|p2−k)

for k ∈ {0, 1, 2, 3} and u > 0;
(H3) f(u) > 0 for u > 0.

The strong differentiability conditions on f in (H1) and (H2) could be relaxed
to C1-differentiability, at the expense of extra conditions on Hölder continuity and
bounds leading to the result of Lemma 2.2 below. Note that

f(0) = f ′(0) = 0. (1.2)

Clearly, f(u) := |u|p−1u satisfies (H1)–(H3) if p ∈ (1, pS).

Set

F (u) :=

∫ u

0
f(s) ds if u ∈ R,

so

|F (u)| ≤ C(|u|p1+1 + |u|p2+1) for all u ∈ R (1.3)

by (H2). For a domain Ω ⊆ RN and the Dirichlet problem −∆u+ λu = f(u) stated
on Ω the variational (or energy) functional is given by

JΩ(u) :=
1

2

∫
Ω

(|∇u|2 + λu2) dx−
∫

Ω
F (u) dx, u ∈ H1

0 (Ω).

By (H1), (H2) and (1.3) JΩ is well defined and twice continuously differentiable on
H1

0 (Ω), with D2JΩ globally Hölder continuous on bounded subsets of H1
0 (Ω).

It is convenient to write a point in RN as (ξ, η), where ξ ∈ Rk and η ∈ RN−k.
Moreover, we denote by

L := {(ξ, η) ∈ Rk × RN−k : |η| < 1}
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the open cylinder or slab which is, locally, the limit of ΩR as R→∞. Ground state
solutions of the limit problem {

−∆u+ λu = f(u),

u ∈ H1
0 (L).

(1.4)

will serve as building blocks for multibump solutions. Assume that the following
holds:

(H4) Problem (1.4) has a positive solution U which is radially symmetric in ξ and
η separately, and which is nondegenerate, in the sense that the kernel of the
space of solutions to the problem

−∆u+ λu = f ′(U)u, u ∈ H1
0 (L),

has dimension k.

Some examples of nonlinearities which satisfy (H4) are given in [7]. Note that every
positive solution of (1.4) is radially symmetric in η and strictly decreasing in |η|,
by [3, Theorem 1.2].

For each x ∈ MR we choose a linear isometry Ax ∈ O(N) which maps the

tangent space TxM onto Rk × {0} and (TxM)⊥ onto {0} × RN−k, and we set

Lx := {x+A−1
x (z) : z ∈ L}. (1.5)

We consider U to be extended by 0 to all of RN , and for each R > 0 we define

Ux,R(y) := U(Ax(y − x)) for y ∈ RN . (1.6)

Since U is radially symmetric in ξ and in η, the function Ux,R does not depend on

the choice of Ax ∈ O(N) as long as it satisfies Ax(TxM) = Rk × {0}.
Our result is the following.

Theorem 1.1. Assume that (H1)–(H4) hold. Then, for each n ∈ N there exists Rn > 0
such that for every R ≥ Rn there are n points xR,1, . . . , xR,n ∈ MR and a positive
solution uR of (1.1) of the form

uR =
n∑
i=1

UxR,i,R + o(1) (1.7)

in H1(RN ) as R→∞. Moreover, |xR,i − xR,j | → ∞ as R→∞, if i 6= j.

In contrast to the results on expanding annular shells mentioned above, where
in general the variational problem is considered in subspaces of functions that are
symmetric with respect to a subgroup of O(N), the proof of Theorem 1.1 rests on
gluing rotated translates of the positive ground state solution whose existence is
demanded by condition (H4). As R → ∞ the possible number of bumps becomes
arbitrarily large. This basic idea is the same as the one used by Dancer and Yan
in [8]. Nevertheless, our proof is slightly different and simpler, and at the same time
more detailed.

To prove our result we use a Lyapunov-Schmidt reduction argument and follow
closely the approach of our previous paper [1]. As is typical for this method, the
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proof of existence of solutions with n bumps reduces to finding critical points of the
natural variational functional JR := JΩR

restricted to a finite dimensional manifold
ΣR with boundary, which can be understood as the subset of the configuration space
of n points in M one obtains when subtracting a closed neighborhood of the collision
set. An element of this manifold roughly marks the centers of mass of the n bumps
to be glued together. The boundary of ΣR consists of tuples that contain at least
two centers of mass at a prescribed minimum distance. It turns out that the value
of JR decreases near the boundary of ΣR, i.e. where two masses interact, so that JR
possesses an interior maximum on ΣR, a global critical point.

In [1] instead we take k = 1 and build solutions out of bumps that are lined up
along M with alternating signs. In that setting JR increases near the boundary of
ΣR, so that a minimum exists in the interior. We also consider manifolds M with
boundary and define ΣR to consist of those elements from Mn that have centers of
mass that stay clear of each other and of the boundary of M . Since JR also increases
as one bump approaches the boundary of M , there still exists a minimum of JR in
the interior of ΣR.

When the domain is an annulus, i.e. it is a tubular neighborhood of the unit
sphere, there is always a positive radial solution, which is obviously different from
the multibump solutions that we find and which exists for all values of the exponent
p > 1. It is natural to ask whether a similar solution exists also in the case of domains
which are expanding annular shells, but different from the annulus. A positive answer
in this direction is given by Bartsch, Clapp, Grossi and Pacella [2]. Moreover, an
interesting open question is whether similar solutions exist in tubular neighborhoods
of expanding k-dimensional manifolds (0 < k < N).

The outline of the paper is as follows: In Section 2 we compute the required
estimates and in Section 3 we describe the finite dimensional reduction and prove
Theorem 1.1.

2. Preliminary estimates

We recall some inequalities from [1].

Lemma 2.1. Assume that µk > µ̄ ≥ 0 for k = 1, 2, 3. Then there is C > 0 such that∫
RN

e−µ1|x−x1|e−µ2|x−x2| dx ≤ Ce−µ̄|x1−x2|

and ∫
RN

e−µ1|x−x1|e−µ2|x−x2|e−µ3|x−x3| dx ≤ C exp

(
−µ̄ min

x∈RN

3∑
k=1

|x− xk|
)

for all x1, x2, x3 ∈ RN .

Proof. See [1, Lemma 2.1]. �
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Lemma 2.2. There is α ∈ (1/2, 1] with the following property: Given C ≥ 1 and

n ∈ N there is a constant C̃ = C̃(α, n,C) > 0 such that for u1, u2, . . . , un ∈ R with
|ui| ≤ C it holds that ∣∣∣∣f( n∑

i=1

ui

)
−

n∑
i=1

f(ui)

∣∣∣∣ ≤ C̃∑
i<j

|uiuj |α

and∣∣∣∣F( n∑
i=1

ui

)
−

n∑
i=1

F (ui)−
∑
i 6=j

f(ui)uj

∣∣∣∣ ≤ C̃(∑
i<j

|uiuj |2α +
∑
i<j<k

|uiujuk|2/3
)
.

Proof. See [1, Lemma 2.2]. �

Set Bms := {x ∈ Rm : |x| < s}. Let λ1,s be the first Dirichlet eigenvalue of −∆

in BN−ks and ϑ1,s be the corresponding L2-normalized positive eigenfunction. For
the solution of the limit problem (1.4) the following decay estimates hold.

Lemma 2.3. There are constants c1, c2 > 0 such that

c1|ξ|−
k−1
2 e−µ|ξ|ϑ1,1(η) ≤ |U(ξ, η)| ≤ c2|ξ|−

k−1
2 e−µ|ξ|ϑ1,1(η) for all (ξ, η) ∈ L,

where µ :=
√
λ+ λ1.

Proof. This follows in the same way as Eq. (7) in [7, Theorem 4]. �

Let Ls := {(ξ, η) ∈ Rk×RN−k : |η| < s}. The bottom of the spectrum of −∆ in
L2(Ls) with Dirichlet boundary conditions coincides with λ1,s, cf. [1, Lemma 2.5],
whose proof extends to the present case.

We fix r > 1 such that λ1,r + λ > 0. For R > 0, x ∈MR and s ∈ [1, r], let

Ls,x := {x+A−1
x (z) : z ∈ Ls}

with Ax as in (1.5). Note that the first eigenvalue of −∆ in H1
0 (ΩR ∩ Ls,x) satisfies

λ1(ΩR∩Ls,x) +λ > 0 for large R, since ΩR∩Ls,x is an open bounded subset of Lr,x.
We write Vx,s,R for the unique solution to the problem{

−∆u+ λu = f(Ux,R) in ΩR ∩ Ls,x,
u = 0 on ∂(ΩR ∩ Ls,x),

(2.1)

with Ux,R as in (1.6). Assumption (H3) and the maximum principle, which applies
by the argument in [1, Remark 2.8], yield that Vx,s,R is positive for R large enough.

We consider Vx,s,R as extended by 0 to RN . When s = 1 we omit it from the notation
and write λ1, Lx, Vx,R instead of λ1,1, L1,x, Vx,1,R.

The following decay estimates hold.

Lemma 2.4. For each s ∈ [1, r) there are positive constants c3, c4 and R0, independent
of x ∈MR, such that all quantities

|Ux,R(y)| , |∇Ux,R(y)| , |Vx,s,R(y)| , |∇Vx,s,R(y)| ,

are bounded by c3e
−c4|y−x| for all R ≥ R0 and almost all y ∈ RN . Moreover,∣∣D2Ux,R(y)

∣∣ and
∣∣D2Vx,s,R(y)

∣∣
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are bounded uniformly in Lx and ΩR ∩ Ls,x respectively, independently of R ≥ R0.

Proof. Lemma 2.3, together with standard regularity estimates, yields the estimates
for Ux,R and its derivatives.
To prove the estimates for Vx,s,R we assume without loss of generality that x = 0

and that Rk × {0} is the tangent space to MR at 0. Then there exists c̃s > 0 such
that ϑ1,r(η) ≥ c̃s for all η ∈ BN−ks . We write y ∈ Ls as (ξ, η) with ξ ∈ Rk and

η ∈ BN−ks , and set

W (y) := e−ν|ξ|ϑ1,r(η)

where ν is a small positive constant, independent of R, which will be fixed next. A
straightforward computation gives

−∆W (y) + λW (y) =

(
(N − 1) ν

|ξ|
− ν2 + λ1,r + λ

)
W (y)

>
(
λ1,r + λ− ν2

)
c̃se
−ν|ξ|.

Since λ1,r + λ > 0 we have that λ1,r + λ− ν2 > 0 if ν is small enough. On the other
hand, assumption (H2) on f together with Lemma 2.3 yield that

f(Ux,R) ≤ c̃1e
−µp1|ξ|,

for some large enough c̃1 > 0. By comparison with equation (2.1) we obtain that

Vx,s,R ≤ c̃2W with c̃2 := c̃1c̃
−1
s

(
λ1,r + λ− ν2

)−1
and, hence, the exponential bound

on Vx,s,R. Regularity estimates using the results in [9] yield the estimates for its
derivatives. Note that the boundary of ΩR∩Ls,x is Lipschitz and satisfies an exterior
ball condition, uniformly as R→∞. �

Lemma 2.5. If s ∈ [1, r) and p ∈ (0,∞) then we have the following asymptotic
estimates as R→∞, independently of x ∈MR:∫

RN

|Vx,s,R − Ux,R|pdy = O(R−min{p,1}), (2.2)∫
RN

|∇Vx,s,R −∇Ux,R|2dy = O(R−1), (2.3)∫
RN

|F (Vx,s,R)− F (Ux,R)|dy = O(R−1), (2.4)∫
RN

|f(Vx,s,R)− f(Ux,R)|pdy = O(R−min{p,1}). (2.5)

Proof. Let x be a point on the manifold M . After translation and rotation we may
assume that x = 0 and that Rk × {0} is the tangent space to M at 0. Since M is

compact we may find δ, ρ > 0, independent of x, and a smooth map h : Bkρ → BN−kδ

such that
M ∩

(
Bkρ × BN−kδ

)
= {(ξ, h(ξ)) : ξ ∈ Bkρ}

whose derivatives up to the order 3 are bounded independently of ξ ∈ Bkρ and x ∈M .
Setting hR(ξ) := Rh(ξ/R) we have that

M̃R := MR ∩
(
BkρR × BN−kδR

)
= {(ξ, hR(ξ)) : ξ ∈ BkρR}.
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Following the argument given in [1, Lemma 3.2] one shows that there is a constant
C, independent of x, such that

|hR(ξ)| ≤ C |ξ|2

R

for all ξ ∈ BkρR, and

{ξ} × BN−k1 (hR(ξ)) ⊂
(
{ξ} × RN−k

)
∩ Ω̃R ⊂ {ξ} × BN−k

1+C(1+|ξ|2)/R2
(hR(ξ))

for all ξ ∈ BkρR−1 and R large enough, where Ω̃R is the tubular neighborhood of M̃R

of radius 1. Consider the set

QR := Bk
R1/4 × BN−ks ⊂ Ls

and decompose RN as the union of the sets

RN rQR, QR ∩ (ΩR r L) , QR ∩ (L r ΩR) , QR ∩ L ∩ ΩR.

Note that the integrals over QRr(L ∪ ΩR) are zero. Using Lemma 2.4 and following
closely the proof of [1, Lemma 3.2], with the obvious modifications, one obtains
(2.2), (2.3), (2.4), (2.5). �

Recall that

JR(u) =
1

2

∫
ΩR

(|∇u|2 + λu2)dx−
∫

ΩR

F (u)dx, u ∈ H1
0 (ΩR),

JL(u) =
1

2

∫
L
(|∇u|2 + λu2)dx−

∫
L
F (u)dx, u ∈ H1

0 (L),

are the energy functionals associated to problems (1.1) and (1.4) respectively.

Lemma 2.6.

sup
x∈MR

‖Vx,R − Ux,R‖H1(RN ) = O(R−1/2), (2.6)

sup
x∈MR

|JR(Vx,R)− JL(U)| = O(R−1), (2.7)

sup
x∈MR

‖∇JR(Vx,R)‖H1
0 (ΩR) = O(R−1/2), (2.8)

as R→∞.

Proof. The first two asymptotic estimates follow immediately from Lemma 2.5. To
prove the third one we choose s ∈ (1, r) and a cut-off function χ ∈ C∞(RN−k) with
χ(η) = 1 if |η| ≤ 1 and χ(η) = 0 if |η| ≥ s. Fix R and x ∈MR. Assuming that x = 0
and that Rk×{0} is the tangent space to MR at 0, we write v ∈ H1

0 (ΩR) as v = v1+v2

where v1(ξ, η) := χ(η)v(ξ, η). Then v1 ∈ H1
0 (ΩR∩Ls,x), supp(v2) ⊂ ΩRrLx and there

exists a constant cs, independent of R and x, such that ‖v1‖H1(RN ) ≤ cs ‖v‖H1(RN )
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for all v ∈ H1
0 (ΩR). Applying the definition of Vx,s,R and Lemma 2.5 we obtain

|DJR(Vx,R)v| = |DJR(Vx,R)v1|
≤ |DJR(Vx,s,R)v1|+ |DJR(Vx,R)v1 −DJR(Vx,s,R)v1|

≤
∣∣∣∣∫

RN

(f(Ux,R)− f(Vx,s,R)) v1

∣∣∣∣+O(R−1/2) ‖v1‖H1(RN )

≤ O(R−1/2) ‖v‖H1(RN ) ,

as claimed. �

For m = 1, 2 we consider functions gm : R+ → R+ (to be fixed later) satisfying

g2 < g1, (2.9)

gm(R)→∞ as R→∞, (2.10)

gm(R) = o(R) as R→∞. (2.11)

Let Dm,R be the set of all points (x1, . . . , xn) ∈ (MR)n such that there exist i, j ∈
{1, . . . , n} with i 6= j and |xi − xj | ≤ gm(R), and let

Um,R := (MR)n rDm,R.

Then U1,R and U2,R are open subsets of (MR)n with U1,R ⊂ U2,R. For X =
(x1, . . . , xn) ∈ U2,R we define ϕR : U2,R → H1

0 (ΩR) by

ϕR(X) :=

n∑
i=1

Vxi,R. (2.12)

Proposition 2.7. Let α be as in Lemma 2.2 and fix γ ∈ (1/2, α). Then

sup
X∈U2,R

‖∇JR(ϕR(X))‖H1
0 (ΩR) = O(e−γµg2(R)) +O(R−1/2)

as R→∞.

Proof. Fix X = (x1, . . . , xn) ∈ U2,R. To simplify notation we write Ui := Uxi,R and
Vi := Vxi,R. If v ∈ H1

0 (ΩR) satisfies ‖v‖H1
0 (ΩR) = 1, using Lemmas 2.6, 2.2, 2.5, 2.3

and 2.1, in this order, we obtain∣∣∣∣DJR(ϕR(X))v

∣∣∣∣ =

∣∣∣∣ n∑
i=1

DJR(ϕR(Vi))v +

∫
ΩR

( n∑
i=1

f(Vi)− f
( n∑
i=1

Vi

))
v

∣∣∣∣
≤

n∑
i=1

‖∇JR(Vx,R)‖H1
0 (ΩR) +

(∫
ΩR

∣∣∣∣ n∑
i=1

f(Vi)− f
( n∑
i=1

Vi

)∣∣∣∣2)1/2

≤ O(R−1/2) + C
∑
i<j

(∫
ΩR

|ViVj |2α
)1/2

= O(R−1/2) + C
∑
i<j

(∫
ΩR

|UiUj |2α
)1/2

= O(R−1/2) +O(e−γµg2(R)).
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These estimates are independent of the choice of X. �

Set

E := JL(U)

and define

g3(R) := g1(R)−
k−1
2 e−µg1(R) for R > 0.

Proposition 2.8. There exists β > 0 such that

sup
X∈∂U1,R

JR(ϕR(X)) ≤ nE − βg3(R) + o(g3(R)) +O(R−1/2)

as R→∞.

Proof. If X ∈ ∂U1,R then |xi − xj | ≥ g1(R) for all i, j ∈ {1, . . . , n} and there exist
i0 6= j0 with |xi0 − xj0 | = g1(R). We write Ui := Uxi,R and Vi := Vxi,R. By Lemma 2.3
we may choose ε, ρ > 0 such that f(Ui0) > ε and Uj0 ≥ Cg3(R) in Bρ(xi0) := {y ∈
RN : |y − xi0 | < ρ} for R large enough, independently of X ∈ ∂U1,R. Hence, for
some β > 0 and large enough R we have that

∫
RN

f(Ui0)Uj0 ≥ βg3(R). (2.13)

Since Ui and Vi are uniformly bounded, using Lemma 2.2, estimate (2.2) and Lem-
mas 2.3 and 2.1 we obtain, as in the proof of [1, Prop. 3.5],

∣∣∣∣∫
ΩR

[
F

(∑
i

Vi

)
−
∑
i

F (Vi)

]
−
∑
i 6=j

∫
ΩR

f(Vi)Vj

∣∣∣∣
≤ C

∑
i<j

∫
ΩR

|ViVj |2α + C
∑
i<j<k

∫
ΩR

|ViVjVk|2/3

= C
∑
i<j

∫
ΩR

|UiUj |2α + C
∑
i<j<k

∫
ΩR

|UiUjUk|2/3 +O(R−2/3)

= o(g3(R)) +O(R−2/3).

(2.14)
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Therefore, using estimates (2.7), (2.14), (2.2), (2.5) and (2.13) we conclude that

JR(ϕR(X)) =
∑
i

JR(Vi) +
1

2

∑
i 6=j

∫
ΩR

(∇Vi · ∇Vj + λViVj)

+

∫
ΩR

[∑
i

F (Vi)− F
(∑

i

Vi

)]
= nE +

1

2

∑
i 6=j

∫
ΩR

f(Ui)Vj −
∑
i 6=j

∫
ΩR

f(Vi)Vj

+ o(g3(R)) +O(R−1/2)

= nE − 1

2

∑
i 6=j

∫
ΩR

f(Ui)Uj + o(g3(R)) +O(R−1/2)

≤ nE − 1

2

∫
ΩR

f(Ui0)Uj0 + o(g3(R)) +O(R−1/2)

≤ nE − βg3(R) + o(g3(R)) +O(R−1/2),

as claimed. �

Proposition 2.9. As R→∞,

sup
X∈U1,R

JR(ϕR(X)) ≥ nE + o(g3(R)) +O(R−1/2).

Proof. We fix n distinct points x1, . . . , xn ∈M and set XR := (Rx1, . . . , Rxn). Then
XR ∈ U1,R for R large enough because of (2.11). As in the proof of Proposition 2.8
we have that

JR(ϕR(X)) = nE − 1

2

∑
i 6=j

∫
ΩR

f(Ui)Uj + o(g3(R)) +O(R−1/2).

Let δ ∈ (0,mini 6=j |xi − xj |) and µ̄ ∈ (0, µ). Lemmas 2.3 and 2.1 yield∫
ΩR

f(Ui)Uj = O(e−µ̄δR) = o(e−µg1(R))

for all i 6= j, and our claim follows. �

3. Finite dimensional reduction and proof of Theorem 1.1

Let ΣR := ϕR(U2,R). The map ϕR is a C2-immersion of U2,R into H1
0 (ΩR) (cf. [1,

Lemma 4.1]) but it is not injective if n > 1. Two points in U2,R have the same image
under ϕR if and only if one of them is obtained from the other by a permutation of
coordinates in Mn

R. Since the group of permutations acts freely on U2,R, the set ΣR

is a C2-submanifold of H1
0 (ΩR).

For u ∈ ΣR we denote by Pu,R the orthogonal projection onto the normal space

NuΣR := (TuΣR)⊥ to ΣR at u. For each u ∈ H1
0 (ΩR) we consider D2JR(u) as an

element of L(H1
0 (ΩR)), i.e. as the derivative of the map ∇JR : H1

0 (ΩR) → H1
0 (ΩR)

at the point u.
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The next two lemmas are proved in the same way as the analogous statements
in [1].

Lemma 3.1. There are r0 > 0 and R1 ≥ 1 such that for R ≥ R1 and for every
u ∈ ΣR there is a unique vu ∈ u + NuΣR which satisfies ‖u − vu‖H1

0 (ΩR) < r0 and

Pu,R∇JR(vu) = 0. Moreover,

‖u− vu‖H1
0 (ΩR) = O(‖∇JR(u)‖H1

0 (ΩR)) (3.1)

and

|JR(u)− JR(vu)| = O(‖∇JR(u)‖2H1
0 (ΩR)) (3.2)

as R→∞ independently of u ∈ ΣR, and the operator Pu,RD
2JR(vu)|NuΣR

is invert-
ible in L(NuΣR).

Proof. See [1, Lemma 4.3]. �

We now fix r0 > 0 and R1 ≥ 1 as in Lemma 3.1. For R ≥ R1 let ψR : U2,R →
H1

0 (ΩR) be given by ψR(X) := vu, where u := ϕR(X) and vu is given by Lemma 3.1.
Define GR : U2,R → R by

GR := JR ◦ ψR.

Lemma 3.2. For R ≥ R1 the map GR is of class C1. If X ∈ U2,R is a critical point
of GR then ψR(X) is a critical point of JR.

Proof. See [1, Lemma 4.4]. �

Proof of Theorem 1.1. By Lemma 3.2 it suffices to show that GR has a local max-
imum in U2,R. Propositions 2.7, 2.8 and 2.9, together with estimate (3.2), yield the
following inequalities:

maxGR(∂U1,R) ≤ nE − βg3(R) + o(g3(R)) +O(R−1/2) +O(e−2γµg2(R)),

maxGR(U1,R) ≥ nE + o(g3(R)) +O(R−1/2) +O(e−2γµg2(R)),

with β > 0 and γ > 1/2. We choose

g1(R) :=
1

4µ
logR and g2(R) :=

(
1

2
+

1

4γ

)
g1(R).

They clearly satisfy (2.9), (2.10) and (2.11). Note that

R−1/2 = o(g3(R)) and e−2γµg2(R) = o(g3(R)).

Therefore,

maxGR(U1,R) > maxGR(∂U1,R)

for large R. Hence GR has a local maximum XR in U2,R. Estimate (3.1), together
with Lemma 2.6, proves (1.7). Finally, XR = (xR,1, . . . , xR,n) ∈ U1,R and (2.10) yield
|xR,i − xR,j | → ∞ as R→∞, if i 6= j. �
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