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Abstract. Let M be a smooth k-dimensional closed submanifold of RY, N > 2,
and let 2 be the open tubular neighborhood of radius 1 of the expanded manifold
Mp = {Rzx : z € M}. For R sufficiently large we show the existence of positive
multibump solutions to the problem

—Au+ Au = f(u) in Qg, u =0 on 00xg.

The function f is superlinear and subcritical, and A > —\y, where \; is the first
Dirichlet eigenvalue of —A in the unit ball in RV —F,

1. Introduction

Let M be a compact k-dimensional smooth submanifold of RV without boundary,
1<k<N-1, N >2. For R >0 define

Qp = U {Rx—l—v:v e (T, M)*:, |v| < 1},
xeM
where T, M is the tangent space of M at x, and (T, M )L is its orthogonal complement
in RY. Thus, for R large enough, Qg is the open tubular neighborhood of radius 1
of the expanded manifold Mp := {Rx : x € M}.
We consider the problem

{—Au—l—)\u:f(u) in Qg,

1.1
u=20 on 0€)g, (1.1)

for A > —M\y, where \q is the first Dirichlet eigenvalue of —A in the unit ball in
RNk,

Equation (1.1) appears in nonlinear optics and models standing waves in optical
waveguides. The most interesting variant for applications that aspire to exploit the
nonlinear properties of the material is the self-focusing case where f(u)/u — oo as
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|u| — co. A typical example is given by f(u) = u?, modelling Kerr’s effect. For more
information on the physical background see for example [13].

Geometrically, if K = 1 then Qg is a tubular guide, i.e., an optical fiber. If k > 2
then we say that Qg is a slab, or, more specifically, a shell if k = N — 1.

For expanding annular shells, i.e., tubular neighborhoods of expanding spheres,
there is a considerable body of existence results for multiple solutions that are sym-
metric with respect to some subgroup of O(N), cf. [4-6,10-12,14]. The first existence
result for multiple solutions we are aware of that does not depend on symmetries of
the domain was given by Dancer and Yan [8] for expanding shells that bound convex
domains, in the case of A = 0.

Inspired by the article of Dancer and Yan we are interested in finding positive
multibump solutions to (1.1) for large R, extending their result to more general
domains and to the case of A # 0.

Set pg :=o00 if N =1,2 and pg := (N +2)/(N —2) if N > 3, and consider the
following hypotheses on f:

(H1) f € C0,00) N C3(0,00);
(H2) there are C' > 0 and p1,p2 € (1,ps) such that p; < py and

FE )] < Cuf ™ + fulP2F)
for k € {0,1,2,3} and u > 0;
(H3) f(u) >0 for u > 0.

The strong differentiability conditions on f in (H1) and (H2) could be relaxed
to Cl-differentiability, at the expense of extra conditions on Hoélder continuity and
bounds leading to the result of Lemma 2.2 below. Note that

7(0) = /(0) = 0. (1.2)
Clearly, f(u) := |u[P~'u satisfies (H1)-(H3) if p € (1, ps).
Set
F(u) := i
(u) /0 f(s)ds if u e R,
SO
|F(u)] < C(JufP™ 4 |ufP2t) forallu € R (1.3)

by (H2). For a domain Q € R and the Dirichlet problem —Au + Au = f(u) stated
on € the variational (or energy) functional is given by

Ja(u) := ;/Q(IVU,\Q + \u?) dx — /QF(u) dz, u € HHQ).

By (H1), (H2) and (1.3) Jq is well defined and twice continuously differentiable on
HE(Q), with D%Jg globally Hélder continuous on bounded subsets of H} ().

It is convenient to write a point in RV as (£,7), where ¢ € R*¥ and € RNk,
Moreover, we denote by

L:={(&n) e RE x RN F . |n| < 1}
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the open cylinder or slab which is, locally, the limit of Q2 as R — co. Ground state
solutions of the limit problem

(1.4)

—Au+ A= f(u),
{ u € H(L).

will serve as building blocks for multibump solutions. Assume that the following
holds:

(H4) Problem (1.4) has a positive solution U which is radially symmetric in £ and
7 separately, and which is nondegenerate, in the sense that the kernel of the
space of solutions to the problem

—Au+u=f'(U)u, uec HL),
has dimension k.

Some examples of nonlinearities which satisfy (H4) are given in [7]. Note that every
positive solution of (1.4) is radially symmetric in 1 and strictly decreasing in ||,
by [3, Theorem 1.2].

For each x € Mp we choose a linear isometry A, € O(N) which maps the
tangent space T, M onto R* x {0} and (T, M)™ onto {0} x RN~* and we set

L, :={x+A;'(2): z €L} (1.5)
We consider U to be extended by 0 to all of RV, and for each R > 0 we define
Urr(y) :==U(Ae(y—x))  fory e RY. (1.6)

Since U is radially symmetric in £ and in 7, the function U, r does not depend on
the choice of A, € O(N) as long as it satisfies A, (T, M) = R* x {0}.
Our result is the following.

Theorem 1.1. Assume that (H1)—(H4) hold. Then, for eachn € N there exists Ry, > 0
such that for every R > R, there are n points TR 1,...,Trn € Mg and a positive
solution ur of (1.1) of the form

ur =Y Usp.r+0(1) (1.7)

i=1
in HY(RN) as R — co. Moreover, |xp; — xR j| — 00 as R — oo, if i # j.

In contrast to the results on expanding annular shells mentioned above, where
in general the variational problem is considered in subspaces of functions that are
symmetric with respect to a subgroup of O(N), the proof of Theorem 1.1 rests on
gluing rotated translates of the positive ground state solution whose existence is
demanded by condition (H4). As R — oo the possible number of bumps becomes
arbitrarily large. This basic idea is the same as the one used by Dancer and Yan
in [8]. Nevertheless, our proof is slightly different and simpler, and at the same time
more detailed.

To prove our result we use a Lyapunov-Schmidt reduction argument and follow
closely the approach of our previous paper [1]. As is typical for this method, the
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proof of existence of solutions with n bumps reduces to finding critical points of the
natural variational functional Jg := Jq, restricted to a finite dimensional manifold
>.r with boundary, which can be understood as the subset of the configuration space
of n points in M one obtains when subtracting a closed neighborhood of the collision
set. An element of this manifold roughly marks the centers of mass of the n bumps
to be glued together. The boundary of g consists of tuples that contain at least
two centers of mass at a prescribed minimum distance. It turns out that the value
of Jg decreases near the boundary of ¥, i.e. where two masses interact, so that Jr
possesses an interior maximum on X g, a global critical point.

In [1] instead we take k = 1 and build solutions out of bumps that are lined up
along M with alternating signs. In that setting Jr increases near the boundary of
>R, so that a minimum exists in the interior. We also consider manifolds M with
boundary and define X to consist of those elements from M™ that have centers of
mass that stay clear of each other and of the boundary of M. Since Jg also increases
as one bump approaches the boundary of M, there still exists a minimum of Jg in
the interior of X g.

When the domain is an annulus, i.e. it is a tubular neighborhood of the unit
sphere, there is always a positive radial solution, which is obviously different from
the multibump solutions that we find and which exists for all values of the exponent
p > 1. It is natural to ask whether a similar solution exists also in the case of domains
which are expanding annular shells, but different from the annulus. A positive answer
in this direction is given by Bartsch, Clapp, Grossi and Pacella [2]. Moreover, an
interesting open question is whether similar solutions exist in tubular neighborhoods
of expanding k-dimensional manifolds (0 < k < N).

The outline of the paper is as follows: In Section 2 we compute the required
estimates and in Section 3 we describe the finite dimensional reduction and prove
Theorem 1.1.

2. Preliminary estimates

We recall some inequalities from [1].

Lemma 2.1. Assume that pp > i > 0 for k =1,2,3. Then there is C' > 0 such that
/ e~ Hlz=a1] g=p2lz—22| g0 < Clp=AlT1—T2]
RN

and

3
e~ le—al gmpale—aafo—pslz=sl g < Cexp( —ji min g |z — x|
RN et

for all 1, xo, 23 € RN,

Proof. See [1, Lemma 2.1]. O
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Lemma 2.2. There is a € (1/2,1] with the following property: Given C' > 1 and
n € N there is a constant C = C(a,n,C) > 0 such that for uy,ug,...,u, € R with
lui| < C it holds that

‘f(;uz> - Zz:;f(ui) <O Juiug|®

1<j
and
‘F( u2> - ZF(UZ) - Zf(ui)uj < 5<Z|uiuj|2a + Z |u@-ujuk|2/3>.
i=1 i=1 i#j i<j i<j<k
Proof. See [1, Lemma 2.2]. O

Set BY" := {x € R™ : |z| < s}. Let A\; s be the first Dirichlet eigenvalue of —A
in BY—* and Y15 be the corresponding L?-normalized positive eigenfunction. For
the solution of the limit problem (1.4) the following decay estimates hold.

Lemma 2.3. There are constants c1,co > 0 such that
1 Jo—

erlel™" 2 e oy (n) < [U(E )] < eal¢] =7 e da () for all (§,m) € L,
where p1 = /A + \1.
Proof. This follows in the same way as Eq. (7) in [7, Theorem 4]. O
Let Ly := {(&,1) € R¥ xRV~ : || < s}. The bottom of the spectrum of —A in
L*(Ls) with Dirichlet boundary conditions coincides with A; s, cf. [1, Lemma 2.5],

whose proof extends to the present case.
We fix r > 1 such that A1, + A > 0. For R >0, x € Mg and s € [1,7], let

Ley = {x+ A7 (2) : 2 € L}

with A, as in (1.5). Note that the first eigenvalue of —A in H}(Qr NLs,) satisfies
M(QrNLg ;) + A > 0 for large R, since Qg NLg , is an open bounded subset of L, .
We write V,, s g for the unique solution to the problem

{ ~Au+ M u= f(UyR) in Qp N L,

2.1
u=20 on a(QRmLs,x)y ( )

with U, g as in (1.6). Assumption (H3) and the maximum principle, which applies
by the argument in [1, Remark 2.8], yield that V s r is positive for R large enough.
We consider V, s r as extended by 0 to RYN. When s = 1 we omit it from the notation
and write A1, L, V. g instead of A1 1, L1 4, Vi1 R

The following decay estimates hold.

Lemma 2.4. For each s € [1,r) there are positive constants c3, ¢4 and Ry, independent
of x € Mp, such that all quantities

‘UI,R(y)’ ’ IVUZ’,R(y” ) ’Vx,s,R(y” ) ’vvzv,s,R(y)’ 5
are bounded by cze= V=2l for all R > Ry and almost all y € RN . Moreover,
|D*Usr(y)|  and  [D*Visr(y)|
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are bounded uniformly in L, and Qr N L, respectively, independently of R > Ry.

Proof. Lemma 2.3, together with standard regularity estimates, yields the estimates
for U, g and its derivatives.
To prove the estimates for V, ; p we assume without loss of generality that z = 0
and that R¥ x {0} is the tangent space to Mg at 0. Then there exists & > 0 such
that ¥1,.(n) > & for all n € BY . We write y € Ly as (£,7) with ¢ € R* and
n € BN=F and set

W(y) = e Kl (n)
where v is a small positive constant, independent of R, which will be fixed next. A
straightforward computation gives

(N-1)v

—AW (y) + \W (y) = ( — VA A+ A) Wi(y)

> ()\1,r + A - V2) g VIEl

Since A1, + A > 0 we have that Ay, + X — v? > 0 if v is small enough. On the other
hand, assumption (H2) on f together with Lemma 2.3 yield that

fUpr) < 516*#101I£|7

for some large enough ¢; > 0. By comparison with equation (2.1) we obtain that
Ves,p < oW with éo := 516;1 ()\1,7, + A= 1/2)71 and, hence, the exponential bound
on V¢ r. Regularity estimates using the results in [9] yield the estimates for its
derivatives. Note that the boundary of 0 ML, , is Lipschitz and satisfies an exterior
ball condition, uniformly as R — oo. (]

Lemma 2.5. If s € [1,r) and p € (0,00) then we have the following asymptotic
estimates as R — 0o, independently of x € Mp:

[ Ve = UsalPdy = O 20, (22

[ 9 Vee = Uy = O, (23
[ JF Vi) = F(Uldy = O(RY) (2.4
Vo) = F(Us) Py = O i), (25)

Proof. Let x be a point on the manifold M. After translation and rotation we may
assume that z = 0 and that R¥ x {0} is the tangent space to M at 0. Since M is
compact we may find 9, p > 0, independent of z, and a smooth map h : IB%’; — IB%(]SV*]“
such that

M (Bf < By ™) = {(6,h(§)) : ¢ € B}
whose derivatives up to the order 3 are bounded independently of £ € IB%’; and x € M.
Setting hr(§) := Rh(§/R) we have that

Mp = Mg (Bfr < Bii ) = {(6, hrl(©) : § € Bi).
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Following the argument given in [1, Lemma 3.2] one shows that there is a constant
C, independent of z, such that

Cl¢)?

hr(©)] < <

for all £ € IB%’;R, and

{6} x BY ™ (hr()) < ({6} x RN ™) n€g € {6} x B oo (Rr(E))

for all £ € JB%]; r_1 and R large enough, where Q R is the tubular neighborhood of M R
of radius 1. Consider the set

Qr =B, xBY ™ CL,
and decompose R as the union of the sets
RYNQr, QrN(Qr~L), QrN(L~\Qr), QrNLNQk.

Note that the integrals over Qg (L U Q) are zero. Using Lemma 2.4 and following
closely the proof of [1, Lemma 3.2], with the obvious modifications, one obtains
(2.2), (2.3), (2.4), (2.5). O

Recall that

Jr(u) = ;/Q (|IVul? + Mu?)dz — /Q F(u)dz, u € Hi(QR),
Jp(u) = ;/]L(WUF + \u?)dx — /]LF(u)da;, u € Hi(L),

are the energy functionals associated to problems (1.1) and (1.4) respectively.

Lemma 2.6.
sup ||V;5,R - Ux,R”Hl(RN) = O(R_1/2)7 (26)
reEMp
sup |Jr(Va,r) — JL(U)| = O(R™), (2.7)
rzeEMR
sup [[VJr(Va,r)ll a2 () = O(R™'/%), (2.8)
reEMp
as R — oo.

Proof. The first two asymptotic estimates follow immediately from Lemma 2.5. To
prove the third one we choose s € (1,7) and a cut-off function y € C®°(RN~*) with
x(n)=1if |n| <1and x(n) =0if |n| > s. Fix R and x € Mp. Assuming that x =0
and that R¥ x {0} is the tangent space to Mg at 0, we write v € H}(QRg) as v = vi+vg
where v1(€,1) := x(n)v(€,n). Then vy € H} (QrNLs ), supp(v2) C Qr~\L, and there
exists a constant ¢, independent of R and z, such that [|v1]| g1 (ryy < s [[v] 1oy
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for all v € H}(QR). Applying the definition of V, s p and Lemma 2.5 we obtain
|DJR(Va,r)v| = [DJIR(Va,r)vi|
< |DJr(Vi,s,r)v1] + [DJIR(Ve r)v1 — DJR(Vi 5 R)V1]
[ ) = F Vel or| + OB ol o

<O(R™'7?) [0l g2 vy »

as claimed. O

<

For m = 1,2 we consider functions g,,,: R™ — R™ (to be fixed later) satisfying

92 < g1, (2.9)
gm(R) — o0 as R — oo, (2.10)
gm(R) = o(R) as R — oo. (2.11)

Let Dy, r be the set of all points (x1,...,x,) € (Mp)" such that there exist i,j €
{1,...,n} with i # j and |z; — ;| < gm(R), and let

Um.r = (MR)" ~\ Dy, R.

Then Uy r and Uz r are open subsets of (Mp)" with Uy r C Uz p. For X =
(z1,...,2p) € U g we define pr: Us p — HJ(QR) by

= zn: Ve, R- (2.12)
=1

Proposition 2.7. Let o be as in Lemma 2.2 and fix v € (1/2,«). Then

sup [ VIr(0r(X)) 1 () = O ) + O(R™1/?)
Xela r

as R — oo.

Proof. Fix X = (z1,...,%y) € Uz g. To simplify notation we write U; := Uy, r and
Vi :=V,, g If v € H}(QR) satisfies ||v||H5(QR) = 1, using Lemmas 2.6, 2.2, 2.5, 2.3

and 2.1, in this order, we obtain
e (s - 1(w) )
i=1
< ZHVJR(Va:,R)HHg(QR) + (/ Zf f(z VZ)
i=1 i=1

=1

1/2
R7Y%) 4 cZ(/ !Vz-Vj!?“>

‘DJR er(X

2>1/2

Qr

1<)
1/2
=O(R'?) + cZ(/ inU]-y?a>
i<j \Or

- O(Rfl/Z) + O(e*wgz(R)).
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These estimates are independent of the choice of X. O
Set
E :=J,(U)
and define

k—

g93(R) := gl(R)_Tle_“gl(R) for R > 0.
Proposition 2.8. There exists 5 > 0 such that

sup  Jr(pr(X)) < nE — Bgs(R) + o(gs(R)) + O(R™'/?)
Xeay p

as R — oo.

Proof. If X € 0U; g then |z; — x| > g1(R) for all 4,5 € {1,...,n} and there exist
io # jo with |z;y — xj,| = g1(R). We write U; := Uy, gr and V; := V, g. By Lemma 2.3
we may choose €, p > 0 such that f(Us;,) > e and Uj, > Cg3(R) in B,(z4,) == {y €
RN @ |y — x| < p} for R large enough, independently of X € 0l . Hence, for
some [ > 0 and large enough R we have that

[ W = Bl (213)

Since U; and V; are uniformly bounded, using Lemma 2.2, estimate (2.2) and Lem-
mas 2.3 and 2.1 we obtain, as in the proof of [1, Prop. 3.5],

[ [F(2%) -Sran) -3 [ s

i#j VR
ch/QRmijaw > /QR|ijk|2/3

i<j i<j<k

:CZ/Q UiU;1* + C Z/Q VU U3 + O(R23)  (2:14)
R R

i<j i<j<k

= 0(g3(R)) + O(R™?/3).
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Therefore, using estimates (2.7), (2.14), (2.2), (2.5) and (2.13) we conclude that

1
:;JR(WHQZ/Q (VV; - VV; + AV;Vj)

[0 -r(3v)

—nE + - Z/f Vi — Z/f

i#] i#]
+o(g (R))+0(R‘1/2)

—nE- 1 z Us)Uj + o(gs(R)) + O(R™1/2)
Z#J
<nE -3 [ f(U)U; +olgs(R) + OB
Qg
< nE — Bgs(R) + o(gs(R)) + O(R™'/?),
as claimed. O

Proposition 2.9. As R — oo,

sup  Jr(pr(X)) > nE + o(g3(R)) + O(R™/?).
Xelh,r
Proof. We fix n distinct points x1,...,x, € M and set X := (Rz1,..., Rzy,). Then
Xr € Uy g for R large enough because of (2.11). As in the proof of Proposition 2.8
we have that

Jr(pr(X —nE—fZ U)Uj + o(g3(R)) + O(R™/?).
i#j
Let 6 € (0,min;x; |z; — x;|) and f1 € (O,u). Lemmas 2.3 and 2.1 yield

FU)U; = O(e #F) = ofe 1)
Qr

for all ¢ # j, and our claim follows. O

3. Finite dimensional reduction and proof of Theorem 1.1

Let Xg := @r(Us,r). The map pp is a C?-immersion of Us g into H}(QR) (cf. [1,
Lemma 4.1]) but it is not injective if n > 1. Two points in Us r have the same image
under g if and only if one of them is obtained from the other by a permutation of
coordinates in M. Since the group of permutations acts freely on Uy g, the set X g
is a C2-submanifold of H}(QR).

For u € ¥ r we denote by P, r the orthogonal projection onto the normal space
NuXg := (T,XRr)"* to Xx at u. For each u € H}(Qg) we consider D?Jg(u) as an
element of L(H}(QR)), i.e. as the derivative of the map VJg : Hi (Qr) — H}(Qr)
at the point wu.
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The next two lemmas are proved in the same way as the analogous statements
in [1].

Lemma 3.1. There are rq > 0 and Ry > 1 such that for R > Ry and for every
u € X g there is a unique v, € u + NyXgr which satisfies ||u — UuHH&(QR) < 1o and
P, rVJg(vy,) = 0. Moreover,

[ = vull i g = OUINVIR(W)| g1 (0p)) (3.1)
and

) = Tr(w)] = OUVJr(@) 2 o) (32)
as R — oo independently of u € Sg, and the operator P, RD*Jg(vy)|N,s, i invert-
ible in L(N,XR).

Proof. See [1, Lemma 4.3]. O

We now fix 79 > 0 and Ry > 1 as in Lemma 3.1. For R > Ry let ¢g : U p —
HZ(Qg) be given by ¥g(X) := vy, where u := pr(X) and v, is given by Lemma 3.1.
Define Gr: Uz g — R by

GR = JR o) 1/}R.
Lemma 3.2. For R > R; the map Gp is of class C*. If X € Uz r is a critical point
of G then Ygr(X) is a critical point of Jg.
Proof. See [1, Lemma 4.4]. O

Proof of Theorem 1.1. By Lemma 3.2 it suffices to show that G has a local max-
imum in Us . Propositions 2.7, 2.8 and 2.9, together with estimate (3.2), yield the
following inequalities:

max Gr(0U1 r) < nE — Bg3(R) + o(g3(R)) + O(R™Y?) 4 O(e 2mo2(R)y,
max G 7) > nE + o(gs(R)) + O(R™?) 4 O(e o)
with > 0 and v > 1/2. We choose

) = LRl ()= () a®)
They clearly satisfy (2.9), (2.10) and (2.11). Note that
R™Y2 = o(g3(R)) and e~ 2m92(R) — o(ga(R)).
Therefore,

max Gr(U r) > max Gr(0U R)

for large R. Hence G has a local maximum Xp in Up . Estimate (3.1), together
with Lemma 2.6, proves (1.7). Finally, Xr = (zr1,...,2rn) € U1 r and (2.10) yield
|TR; — xR, | = 00 as R — oo, if i # j. O



12 Nils Ackermann, Ménica Clapp and Filomena Pacella

References

[1] N. Ackermann, M. Clapp, and F. Pacella, Alternating sign multibump solutions of non-
linear elliptic equations in expanding tubular domains, Comm. Partial Differential Equa-
tions, to appear, 2012.

[2] T. Bartsch, M. Clapp, M. Grossi, and F. Pacella, Asymptotically radial solutions in
expanding annular domains, Preprint.

[3] H. Berestycki, L.A. Caffarelli, and L. Nirenberg, Inequalities for second-order elliptic
equations with applications to unbounded domains. I, Duke Math. J. 81 (1996), no. 2,
467-494, A celebration of John F. Nash, Jr.

[4] J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear el-
liptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), no. 1,
136-165.

[5] F. Catrina and Z.Q. Wang, Nonlinear elliptic equations on expanding symmetric do-
mains, J. Differential Equations 156 (1999), no. 1, 153-181.

[6] C.V. Coffman, A nonlinear boundary value problem with many positive solutions, J.
Differential Equations 54 (1984), no. 3, 429-437.

[7] E.N. Dancer, Real analyticity and non-degeneracy, Math. Ann. 325 (2003), no. 2, 369
392.

[8] E.N. Dancer and S. Yan, Multibump solutions for an elliptic problem in expanding
domains, Comm. Partial Differential Equations 27 (2002), no. 1-2, 23-55.

[9] S.J. Fromm, Potential space estimates for Green potentials in convex domains, Proc.
Amer. Math. Soc. 119 (1993), no. 1, 225-233.

[10] M.G. Lee and S.S. Lin, Multiplicity of positive solutions for nonlinear elliptic equations
on annulus, Chinese J. Math. 19 (1991), no. 3, 257-276.

[11] Y.Y. Li, Ezistence of many positive solutions of semilinear elliptic equations on annulus,
J. Differential Equations 83 (1990), no. 2, 348-367.

[12] S.S. Lin, Fzistence of many positive nonradial solutions for nonlinear elliptic equations
on an annulus, J. Differential Equations 103 (1993), no. 2, 338-349.

[13] C. Sulem and P.L. Sulem, The nonlinear Schrédinger equation, Applied Mathematical
Sciences, vol. 139, Springer-Verlag, New York, 1999, Self-focusing and wave collapse.

[14] T. Suzuki, Positive solutions for semilinear elliptic equations on expanding annuli:
mountain pass approach, Funkcial. Ekvac. 39 (1996), no. 1, 143-164.

Nils Ackermann

Instituto de Matematicas, Universidad Nacional Auténoma de México, Circuito Exterior,
Ciudad Universitaria, 04510 México D.F., Mexico.

e-mail: nils@ackermath.info

Moénica Clapp
Instituto de Matematicas, Universidad Nacional Auténoma de México, Circuito Exterior,
Ciudad Universitaria, 04510 México D.F., Mexico.

e-mail: mclapp@matem.unam.mx



Multibump Standing Waves 13

Filomena Pacella

Dipartimento di Matematica, Universita “La Sapienza” di Roma, P.le. Aldo Moro 2, 00185
Roma, Italy.

e-mail: pacella®mat.uniromal.it



