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Abstract
We investigate the dynamics of the semiflpvinduced onHol(Q) by the Cauchy prob-
lem of the semilinear parabolic equation
ou— Au = f(x,u)

on Q. HereQ C RN is a bounded smooth domain, afid Q x R — R has subcritical
growth inu and satisfied (x, 0) = 0. In particular we are interested in the case wlfien
is definite superlinear in. The set

A= {ue H}Q) | p'(u) > Oast - oo}
of attraction of 0 contains a decreasing family of invarisets
WiDOW,DW;D ...

distinguished by the rate of convergenggu) — 0. We prove that th&V,’s are global
submanifolds oHZ(2), and we find equilibria in the boundari@é ~. Wy. We also obtain
results on nodal and comparison properties of these edailitm addition the paper con-
tains a detailed exposition of the semigroup approach foilsear equations, improving
earlier results on stable manifolds and asymptotic behaaar an equilibrium.
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1. Introduction

We are interested in parabolic Cauchy problems of the form

ou(t, X) — Au(t, x) = f(x, u(t, x)) t>0 xeQ
(P) ut,x)=0 t>0, xeoQ
u(0, X) = up(x) X eQ

whereN > 1, andQ c RN is a bounded domain with smooth boundary. The nonlinearity
f: Q x R — R has subcritical growth. Our focus is on the case tha&t definite superlinear
at infinity, i.e.

f(x,u)

u

— 00 as|u| — oo, forx € Q.

We consider initial datag in Hol(Q) and various subspaces. The precise hypothesésnal
be stated below. A model nonlinearity is

k
(1.1) f(x, u) = a0()u + > a;(x)|ulP2u
=1

with aj in Lo (Q) for j =0, ..., K, ak(X) > ¢ with some constard > 0,2 < p; < p2 <
< pk <2f,where2 :=2N/(N—-2)if N >3andZ :=c0if N =1, 2.

Our hypotheses orfi imply that (P) induces a (local) semiflowon Hol(Q). Due to the
superlinear growth of the dynamics of (P) have several interesting and challgnfgiastures.
It is well known that for every e Hol(Q) ~ {0} there existg (u) > 0 such that the solution
p'(zu) of (P) with ug = ¢u blows up in finite time provided" > ¢(u). This blow up
phenomenon has been investigated by many people; seet@méed8, 39] and the references
therein. As a consequence of the blow-up phenomenon tharetaxist a global attractor,
the problem is not dissipative.



For the long-time dynamics the set of bounded solutions orergenerally, the set
T, ={u e H}(Q) | ¢'(u) is defined for alt > 0}

obviously plays an important réle. It contains the set afildoria as well as all orbits which

converge towards the set of equilibria, especially all foetiénic orbits between equilibria.

The equilibria of (P) are the time-independent solutionthefelliptic Dirichlet problem

) —Au(x) = f(x, u(x)) X eQ
ux)=0 X € 0Q).

There are plenty of results concerning the solution strectd (E). This is particularly true
for the class of superlinear nonlinearities consideredhis paper which has been a focus of
research in nonlinear analysis, motivated by various apptins. For this class, variational
methods often yield the existence of many positive, negatiwsign-changing solutions under
various hypotheses on the nonlinearityor on the domairf2. Standard references are the
monographs [13,41, 46, 48]. In [4] Ambrosetti and Rabinawiiowed that iff is odd as in
(1.1) then (E) has an unbounded sequence of solutions. Redemas been proved that in
the odd case there even exists an unbounded sequence ofnodddria which are pairwise
non-comparable; cf. [6].

Due to the complexity of the set of equilibria of (P) with a sdmear nonlinearity, a de-
tailed analysis of the dynamics seems to be out of reachaat ie the higher dimensional
caseN > 2. Even forN = 1 most papers only deal with dissipative problems. In the
one-dimensional case the zero number plays an import@nfadstructuring the dynamics,
see [9, 10, 20] for results in this direction. Unfortunatlgre is no generalization of the zero
number to higher dimensions. Concerning the dynamics oiflout dimensional restric-
tions, in addition to the papers on the blow up of solutionsyreuthors worked on regularity
problems (cf. the recent monographs [3, 31]), on the comrerg of bounded solutions to-
wards equilibria (cf. [19, 23,24, 27, 30]), or on the struetaf a global attractor or of compact
isolated invariant sets as in the Chafee-Infante problénthe monographs [22,25,42,43,47],
and the references therein).

In the situation we are interested in, the functior= O is a (trivial) equilibrium which
may be unstable and degenerate. Let

A={ueZ,|¢'(uy—> Oast » oo}

be the set of attraction of 0. If 0 is asymptotically stablertiit is an open subset H&(Q). In
the case which we treat it need not even be a submanifd+q,1(ﬁ)). Itis our goal to present a
fine analysis of the dynamics iA. This is quite delicate and technical in the general sitwati
considered in this paper. In particular we investigate #teo$ equilibria in the boundary
oA == A~ Aof A. Inasequel we plan to study heteroclinic orbitid. In order to give an
idea of the kind of results which we obtain set

E = Hi(Q),



endowed with the norm

1/2
ul == (/|Vu|2dx) .
Q

Let 11 < 12 < A3 < ... be the distinct Dirichlet eigenvalues of the linearized rapa
L := —A— fu(x, 0). Let E, be the generalized eigenspacd.adssociated toi1, ..., Ak-1}
and Elj the complementary eigenspacebn For eaclk > kg := min{j € N | 1; > 0} we
consider th&-th superstable manifold

Wi = {u e Z, | limsuple'(u)|Yt <e™™}c A
t—oo

and its boundanby := Wk ~ Wk. If kg = 1 thenW; = A is the set of attraction of O for
. We haveW,1 ¢ Wk, andDyy1 C Dy for all k > kg. The set3M have been considered
before in the cas®&l = 1 for dissipative problems, see e.g. [9, 21, 49]; and seei8@&fe the
equivalent for periodic equations is used.

The goal of the present paper is to investigate the structuteese superstable manifolds,
and to find signed or nodal equilibria Dyx. Here we call a functiow signedif eitheru > 0
oru < 0, andnodalor sign-changingf u is not signed. Typical results which we prove are:

e W is a submanifold o with codimension dink, .

e If 12 > 0, thenW is the graph of &!-functionU — E, whereU is an open neigh-
borhood of 0 inE; .

o [ W=1{0)

k>ko
e If k > 2 then everyu € Wi . {0} is nodal.

e If A1 > 0 then there exist a positive and a negative equilibrium enltbundaryD; of
W;.

e If 12 > 0 then there exists a (nodal) equilibriumDy.

e If f isodd inu as inthe model case (1.1), then for ekch kg there exists an equilib-
rium in Dg.

Using the zero number we have more results if the domain isdanensional. For instance,
we prove that\k is a graph for alk > kg, and that there exists an equilibriwug € Dy with
preciselyk nodal domains, again for &l > kg (no oddness required).

Our approach owes a lot to the papers [10, 11, 35, 40] by Bkygv-iedler, Polacik,
Quittner. The usual techniques as in [25] for proving thatstable manifold of a hyperbolic
equilibrium is indeed a manifold do not suffice to show t#tis a submanifold. Observe that
the third statement above impliéff.k2k0 Dk = @, hence in the odd case there are infinitely
many equilibria in the boundarieBx. As a consequence of the fourth statement these are
necessarily nodal. We shall also prove that they are unbebiadd pairwise non-comparable.



Thus we have a completely new proof for the results in [4] @&@jdpout (E) in the odd case.
In addition we obtain a great deal of information on the glalymamics of (P).

The paper is organized as follows. In the rest of this seatieformulate our assumptions
on f and fix notation. Then in Section 2 we investigate the stmectd the superstable man-
ifolds. Our results about equilibria on the boundary of tbpesstable manifolds are being
stated and proved in Section 3. The proofs use the semighaapyt for semilinear parabolic
problems. Standard references for these foundations aredbks [3, 18, 25, 31]. Unfortu-
nately, in the literature many of the results which we neegehret been proved in sufficient
generality. Other results seem to be folklore but were newigten up in detail or precise hy-
potheses are missing. Therefore we include a rather leragibgndix where we give a precise
formulation of the semigroup setting which we use, and whex@resent the proofs of all re-
sults for which we did not find a reference. The results fromappendix are also needed for
further investigating the dynamics é4 and Dy, especially for the existence of heteroclinic
orbits between the equilibria whose existence we prove. ®eJe that the appendix will
also be useful for other work on semilinear parabolic protdein particular for those with
superlinear nonlinearity.

1.1. The setting
In order to formulate our hypotheses én Q x R — R we setF(x, u) ;= fou f(x,s)dsand
recall the critical exponent
2N
2* _ N=—> N> 2
%) N=12.

Letay > Ofori =1,2,3,4,0 > 2,p € (2,2%),andp € (2, p] denote constants. We consider
the following hypotheses:

(F1) f: Q x R — R is a Caratheodory functiorf,(-, 0) € L (), and f is continuously
differentiable in the second argument for axeMoreover,| fu(x, u)| < a1 (1+ [u|P~2)
forx e Q,u e R.

(F2) f(x,0)=0forallx € Q.
(F3) f(x, u)signu) > aglu|P~1 —agand f (x, u)u > OF (x, u) — ag for x € Q, u € R.
(F4) fy is Holder continuous at = 0, uniformly inx.

Note that problems (E) and (P) are definite superlinear atitpfif (F3) holds.
Let us assume the basic assumption (F1) for the rest of tbtgse It follows that the
energy functionafb: E — R given by

@ (u) ::%/Q|Vu|2dx—/QF(x, u) dx

is well defined andb is aC?-function. The set of critical points @b will be denoted by

K:={ueE|®(u)=0}.



It is well known that weak solutions of (E) are in one-to-ormrespondence with critical
points of®, andK C C1(Q). If (F2) is satisfied then @ K.

In Theorem B.2 we show that (P) generates a compact contniacal) semiflowp on
E. For everyu € E we denote byl (u) € (0, oo] the maximal existence time of the orbit
starting atu. ThenTy: E — (0, co] is lower semicontinuous. It is known thatpossesse®
as a strict Lyapunov function. More preciselyift) = ¢(t, up) is an orbit, then

d .
oM = ~ 19O 0

fort € (0, T (up)). Here we have written(t) := %u(t), and this quantity exists ih2(Q).
Moreover, the equilibria op are exactly the critical points @b.
Now suppose for the moment that (F2) holds. Recall the sets

Iy ={ue E|Ty(u) =00}
A={ueZ;|o'(u)y—> Oast - co}.
In this situation we also consider the following assumpgion

(F5) For everyC; > 0 there isC, > 0 such that iu € A satisfiegju|| < Cy, then||pt(u)| <
Coforallt > 0.

(F6) If T4 (u) < oo for someu e E, then lim 7, ) ®(p'(u)) < O.

Quittner showed in [39] that (F5) and (F6) are consequent@sl) and (F3), plus an addi-
tional technical condition op — p which is vacuous ifp = p. We do not know whether
additional conditions are needed at all, or whether (F5)(&6¢lare consequences of (F1) and

(F3).
Define F € L(L2) by (Fu)(x) := fy(x, 0)u(x). As in the introduction we denote the
distinct eigenvalues daf = —A — F in L2 with respect to Dirichlet boundary conditions by

A1 < A2 < A3 < .... Throughout the paper we also fix
ko=min{j e N|4; >0}

from the introduction.

1.2. General notation

We setR* := (0, oo) andR? := [0, o). Forq e (1, oo] we denote byl q(Q2) the Lebesgue
space of real functions a2 with norm| - |q. The scalar product ih»(2) is written as(- , -).

For a topological vector spacé of real functions we denote by X the cone of functions
taking values in[R{(J{. The interior of PX will be denoted byPyX. Moreover we use the
notation

Uu>ov :© Uu—ovePX
Uu>o < u—ovePX~{0}.



If X is a metric spaceA is a point or a subset of, andp > 0, then we set

U,(A, X):={xe X|distx(x, A) < p}
B,(A, X) :={xe X |distx(x, A) < p}
S(A X):={xe X|distx(X, A)=p}.

When there is no confusion possible we sometimes omiitfteependency. IfX, ||-|) is a
normed vector space amdl= 0, we often writelJ , X instead ofU,, (0, X), and so forth.

For normed vector space§ Y, we denote by (X, Y) the space of bounded linear maps
from X to Y, endowed with the operator norm. The space of closed (dgssitbounded)
linear maps will be denoted by(X, Y). For A € C(X,Y) we denote by doifA) C X the
domain ofA, and byD (A) the domain ofA endowed with the graph norm. As usualXif=Y
we write L(X) := L(X, X) andC(X) := C(X, X).

If U C Xisopenn e Ngandu € (0, 1), we writeC"(U, Y) for the space of functions
that have continuous derivatives up to ordeand byC"+#(U, Y) the subspace of functions
in C"(U,Y) where then-th derivative is locally Holder continuous with exponent By
C"—(U, Y) for n > 1 we denote the subspace of function€fir1(U, Y) where the derivative
of order(n — 1) is locally Lipschitz. We say that e C"(U, Y) uniformly on bounded subsets
if all derivatives up to ordem are bounded on every bounded subsét oA similar convention
applies to spaces of Holder and Lipschitz continuous fonst

Acknowledgement. We would like to thank P. Brunovsky, M. Fila, and P. Quitther very
helpful discussions and references to the literature. i8pd@nks are due to P. Quittner for
his comments on an earlier version of the paper.

2. Structure of Superstable Manifolds

Throughout this section we assume the hypotheses (F1) 2)dRérk € N denote byEy the
eigenspace of corresponding to the eigenvaldg Fork > kg set

o ={A1, ..., k-1}
and
a;' =o(L) N0 .

ThenakjE are spectral sets. L@qf denote the associated spectral projections and set
El = PFE.

Theng, = {0} if k=ko = 1.
Denote foru € E by J(u) := [0, Ty (u)) the maximal existence interval. The domain of
@ is given by
Di={(tuweRfxE|teJu)}.

Fort > O we also set
Di:={ueE]|(t,u)eD}.



Note thatD is open inRar x E andDy; is open inE. Fort > 0 we write the time-map as
p': Dy » Eandwe sep™ = (p")~L.
For M C E we define itgositive semiorbijtits negative semiorbjiand itsorbit by

0L (M) = Jo' @ M),
t>0

O-(M) == Jo™'(M),

t>0
OM) := O, (M) UO_(M),

respectively. As a consequence of Theorem B.2d) the timeps are injective, thus the
notationp~'(u) € E for u e E with 9 ~'({u}) # @ is justified. We also writ€d(u) := O({u})
for the orbit throughu. We sayM is positive invariantif O,(M) C M and M is negative
invariantif O_(M) C M. We sayM is locally positivg(negativé invariantif for everyu € M
there is an open neighborhotdof u such thaty N M is positive (negative) invariant with
respect to the restriction gf to U. We sayM is (locally) invariantif M is (locally) positive
and negative invariant.

Recall the definition of4 given in the introduction. From Theorem B.2 we conclude that
the sets4 and.A are positive invariant and

(2.1) infd(A) > 0.

2.1. Basic properties

We return to the concept of thketh global superstable manifold

Wi = {u e Z, | limsup|ep(t, u)| ¥t < e*} |
t—o0

and its boundary o
Dk = Wk ~ Wk .

They are defined fok > ko. If ko = 1 then 0 is asymptotically stable, and Corollary A.11
implies thatW; = A is the domain of attraction of O i, which is an open connected
subset ofE. For W the first part of Theorem A.14 applies, in particul& is an invariant
set. Moreover, by Theorem B.2e) also the second part of Eneax.14 applies to\, i.e.
it is an injectively immersed manifold. It is also clear thW&f, ;1 ¢ Wk. We shall prove in
Theorem 2.4 thaDy,1 C Dy for everyk.

For k > maxko, 2} we choose some = ypx € (max{ik—1, 0}, Ax) and consider the
local manifoldW joc In E given by Theorem A.12 for the connected compon@nt 1, Ak)
of R ~ a(L). There are open neighborhoods C E;'E of 0 andh € CY(U*,U™) with
h(0) = 0, h’(0) = 0, such that

Wiloc = {(u,h(u)) [u e uty.



Here we identifyE = E} @ E,. = E;} x E.. If k = kg = 1 then we set ™ := W; and
h = 0. By Theorem A.14

(2.2) Wi = O_— (Wi loc) -
Forry > 0 small enough such th&, E,; C U™, we set

Uk :={ (U, h(u)) | u e U, Ef }
Bk :={(u,h(u)) | u e BE}}
S:={(u,hW)|ueSE}.
We choosey according to the next lemma.
2.1 Lemma. Ifrg > 0is small enough themf ® (&) > 0.

Proof. Let L+ denote the restriction of = —A — F to P;"L,. Thens(Ly) = o, and
L% is a well defined closed operator B L, with domainE,” = P E. It is known (see

e.g. [3, Lemma I.1.1.2]) that the || and|L},r/2 - |2 are equivalent norms oElj. Foru e E
denoteu® = Pkiu. If u, — uin E and eachu, is a linear combination of eigenfunctions of
L, then from

®”(0)[un, un] = (Lun, up)
= (L4uy, uf) + (L-ug, uy)

12 12 —2
> |LY7uf13 — max{|Al, [Ak-1l}ug 15

it follows that there are positive constaiiis, Co, independent ofi, such that
" (0)[u, u] > Cyflut||® — Callu|%.
The claim follows fromh(0) = 0 andh/(0) = 0. O

2.2 Theorem. The k-th superstable manifold \Vis a differentiable submanifold of E with
codimensiodimE, .

Proof. We fix k andrk > 0 such that the conclusion of Lemma 2.1 holds. EoE Rf{ we
consider the set

Mk(2) == ] 0™ (Wkioc) -
teX

For one-point set& = {t} we write M(t) := Mg({t}). Now we define

Dy = ﬂ Wk ~ Mi([0, t]).
t>0

If u e Wk, by Theorem A.12c) and (2.2) theretis> 0 such thatp(t,u) € Bx. We can
therefore define : Wi — R by

(2.3) 7(U) :==min{t > 0| ¢(t,u) € Bx}.



SinceW |oc is locally negative invariant by Theorem A.12p) (u), u) € S foru e W \
Bk. It follows from Lemma 2.1 that

(2.4) inf®&(Wk ~ By) > 0.
We claim that
(2.5) 5k NWgk=0.

To show this, suppose we are givere Dy N Wk. Then there are sequenaes) C Wk and
(tn) € R with up — uandt, — oo, such thap (tn, Un) € Wic\ Wi joc. From (2.4) it follows
that

0:= iﬂf(l)(go(tn, un)) > 0.

On the other hand theretig > 0 such thatb (¢ (tp, u)) < d. Henced (¢ (to, Un)) < o for large
n, contradicting the definition af sincet, — oo. This proves (2.5).
From (2.2) itis clear that

(2.6) Wi = ) Mk([0, t]) .

t>0

Setm := dimE, . The arguments in the proof of Theorem A.14 show tiiat[0, t]) is an
m-codimensional submanifold d& for allt > 0. Now suppose that € W. By (2.5) there
arer > 0 andt > 0 such that

Ur (u) N Wi = Uy (u) N Mg ([0, t]) .
Sinceu € Wk was arbitraryW is anm-codimensional differentiable submanifoldiéf [

The next theorem contains several properties of supeestadahifolds which are important
for our approach to the existence of equilibria in the bouedeof the superstable manifolds.
They are also of some independent interest. Zelenote the set afi e E such thatp!(u)
exists for allt € R andO(u) is bounded. Note thai(u) # @ # w(u) foru € Z due to
the compactness of the semiflow. Her@) andw(u) denote thex- and w-limit sets ofu,
respectively. Now we define

Kii={ueK~\{0}|FveZ:uea@), wl)={0}}.

The setK; consists of those nontrivial equilibria @fthat possess a (generalized) connecting
orbit to 0.
Before we state the theorem, we note a simple consequendeofdms B.2 and A.3:

2.3 Lemma. Suppose thafF5) holds. Thend C Z.. Moreover, if M C A is precompact,
thenO (M) is precompact.

2.4 Theorem. Consider k> kg. Then the following hold:

10



a) Dy is closed in E, positive invariant with respectgpandinf ®(Dyg) > 0. If kg < k <
k’, then Dy C Dy.

b) If (th) C ]Rar and(un) C W satisfy , — oo, up — u for some ue Eg, ande(tp, up) €
& for all n, then ue Dy.

c) AssumgF5). If Dy # @ then Kx N Dy # @. More precisely, given .t Dy and a
sequencéu,) € Wk with u, — u as n— oo we have:

KiN Dk N O1({un}n) # @ .

d) If (F4)holds, then .y, Wk = {0}. If (F4)and (F5) hold, then(, ., Dk = @.

Proof. We use the same notation as in the proof of Theorem 2.2. Festhow that

(2.7) Dk C Dy = ﬂ Wi - Mk ([0, t]) .
t>0

Pick u € Dk and a sequenc@,) C W such thatu, — u. It suffices to show that for
everyt > 0O there isng such thatu, ¢ Mg([O, t]) for n > ng. If this is not the case, we may
assume thatu,) € M([O, t]) for somet > 0. For somdg > 0 by Theorem A.12c) we have
¢ (to, M([O, t])) C Bk. Thereforer (un) < tp for all n wherez (u) is as in (2.3). Hence we
may also assume tha(u,) — t; asn — oo. Theng(z(un), un) — ¢(t1, u) € By. This
contradicts the choice aof and thus (2.7) is proved. Implicitly we have also proved

(2.8) (ue Dy, (up) SWk, Up > UINE) =— 1(uy) » ©.
a) FromDy C W, (2.5) and (2.7) we conclude that

(2.9) Dy = Dy

and thatDy is closed inE. Moreover,Dx € Wk ~ Wi 1oc € Wk ~ B and (2.4) yield
(2.10) infd(Dk) > 0.

It follows from the continuity ofp that Dy is positive invariant. Let us considig < k <
k'. In view of (2.10), and by positive invariancBy N Wi = @. HenceDy C Dy.

b) In this situatioru € Wi. Assume thati € Wk. Theng(tg, u) € Uy for sometg > 0 and
thus we may assume thattg, un) € Uy for all n. By Theorem A.12c) there ig such that
¢ ([t1, 00), up) C Uk for all n, contradicting the properties ¢fi,). Henceu € Dy and b) is
shown.

c) Suppose that we are givene Dy and(up) C W with u, — u. We may assume that
Un € Wk \ Bk so thatv, := ¢(z(up), uy) € &. By Lemma 2.30, ({un}n) is precompact
sovn, > v € &, possibly after passing to a subsequence. We fix 0 and observe that
(2.8) impliesz (un) > t for n large. By compactness we may assume {atun) — t, up)
converges to some

vt € O4({un}n) .

11



Now
p(t, o) = lim_o(t, (z(Un) —t, un)) = lim_o(z(Un), un) =v .

Moreover
p(t,0) = lim ¢(t, ¢(z(Un), un)) = lim p(z(Un) +t,Un) € O4({Un}n) -
Sincet > 0 was arbitrary, these observations prove thatZ and
O) € O+({un}n) -
Hencea (v) # @, and fromw (v) = {0} it follows that
a(®) € Dk N O4({Un}n) -

This proves c).
d) If
ue [ Wk {0}
k>ko

then lim_ o [l@(t, u)||¥t = 0, in contradiction with Lemma B.4b). Therefore

(2.11) (] Wk = {0} .
k>ko
Now suppose that
ue ﬂ Dy .
k>ko

There aralx € W such that — uask — oo. The proof of ¢) yields an elemente S,NZ
with L
b€ ﬂ O+ ({un}nsk) C ﬂ W .
k>ko k>ko

From a) it follows that

contradicting (2.11). We conclude that
ﬂ D=9
k>ko
which together with (2.11) finishes the proof of d). O

2.5 Remark. From a technical viewpoint it is also interesting to consithe semiflow in
the spacei—h;}o(Q), the closure of the set &@°°-functions with compact support g in the

12



Sobolev space-lc}(Q) of order 1 and exponert > 2. This is done in Section B to prove
regularity results. One can also define

1/t

Wak i={U € Ty N Hgo(Q) | limsupllp(t, wil,j, <e ™}
’ t— o0 q,0

andDq k := Wg,k ~ Wg.k for g > 2 andk > ko. It follows from Lemma B.4a) that then
(2.12) Wk = Wak N Hg o(Q) .

Since by Theorem 2.9 « = Wk is a submanifold o of finite codimension, (2.12) and the
denseness of the embeddih@jo(g) < E imply thatWq k is a submanifold Oqu,o(Q) of

the same finite codimension. If2 q' < q” then (2.12) and the continuity of the embedding
H3 o(Q) < HZ o(Q) imply

(2.13) Dk € Dyr.k N Hgy o(Q) -

Moreover,Dq k is closed inHio(Q). To see this, assume the contrary. Then therauace
Wg.k and(un) € Dq such thatu, — uin quO(Q) and hence also ifc. By (2.13) with

q’' = 2 andq” = ¢, and by the closedness Bk in E given in Theorem 2.4a)) ¢ W, .
This contradicts (2.12), and henBg, x must be closed.

2.2. Nodal properties and comparison results

In this subsection in addition to (F1) and (F2) we assume.(F4)

2.6 Theorem. No two dis_tinct elements & are comparabliif k> 2, thatis, u — u»
changes sign for 4 uz € Wk, Up # Uz. In particular, every ue Wi ~ {0} changes sign.

Proof. Assume first that there arg, up € Wi with vg := u; — u2 > 0. By the comparison
principle Theorem B.2a)(t) := ¢(t, u1)—¢e(t, uz) > Oforallt > 0. Hence by Lemma B.4b)
we can apply Corollary A.11 and obtain thgt) /|| (t)| approaches the compact set

M = §E

for somek; > k. SinceEy, is orthogonal toE; in Ly, andE; € PE U (—PE), every
function in E, changes sign. MoreoveRE is closed, so that dig¥, PE U (=PE)) > 0,
contradictingo (t)/|lo(t)|| € PE. Thereforeng > 0 is not possible. For the general case,
assume thati;,u, € Wk andog := u; — up > 0. There are sequences; n)n © W

(i = 1, 2) converging tayj asn — oo. Applying ¢! to this setting, with some smaill> 0,

by the comparison principle we may assume thglies in PoC1(Q), and by invariance and
Theorem B.2a) thatj n — u; in cl(Q). Henceuy n — Uz > O for largen, which we have
shown to be impossible. O

As a corollary we obtain thats is a graph.
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2.7 Theorem. If 1o > 0then the restriction of 5” to W5 is a diffeomorphism onto an open
neighborhood U 00 in E; Stated differently, Wis the graph of a &-function U — E,.

Proof. Theorem 2.6 implies that the restrictid®' |w, is injective. Since keP,” = E; =
E1 C PE U (—PE) it remains to show that every nontrivial tangent vectok\f is a sign
changing function. Assume that we are givere W, andog € TyW> N PE ~ {0}. Set
o(t) := Dg'(U)vg. By Theorem A.14

lim sup|o(t)]| Yt < e#2.
t—>o0

Repeating the arguments above we see that this cannot hagpevery tangent vector is a
nodal function as claimed. O

2.8 Remark. In the special caseé1 > 0, using the order structure, Polacik [35] defined
W, N H&)O(Q) and implicitly proved Theorem 2.7. Hefeql,O(Q) denotes the closure Q°°-

functions with compact support € in the Sobolev spacblc}(Q) of order 1 with exponent
g > N.

We can obtain some information about the location of cemesak super- and subsolutions
of (E) relative to.A. Denote byCé(Q) the space of functions i62(Q) that vanish orpQ.
Define

Sitg = (U e CHQ) | —AuX) > f(x,u(x)) forx e Q}
Siegi={u e CHQ) | —Au(x) < f(x,u(x)) forx e Q}

and
S* :=§§g

where the closure is taken iB. HenceSrJ,g.g (Sreg) s the set of regular supersolutions (sub-
solutions) for problem (E). The sét"™ (S™) consists entirely of weak supersolutions (subso-
lutions) of (E), respectively. We do not know if the séts areexactlythe weak super- and
subsolutions of (E).

2.9 Theorem. Suppose thatue A Ifuy e Stand w > ug, theny > 0. Similarly, if
Uupe S”and w < ug, theny < 0.

Proof. We restrict our attention to the case that € S~ andu, < up. If up € A then

0 € u2+PE by Lemma B.3, which proves the claim in this particular i@ In the general
case, fixt € (0, T+ (u2)) and let(vy) C A be a sequence that convergesufoin E. Then
wn = ¢'(vn) € A converges te'(uy) in C1(Q) and moreover!(uy) — ¢'(uo) € PoCL(Q).
Hence, fom large enough, we have, > ¢'(up) > up, again by Lemma B.3. Since we have
already handled this situation above, the proof is complete O
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The last three theorems can be considerably improvéd # 1, soQ c R is an open
bounded interval. An importanttool is the zero number whvelrecall here. For a continuous
functionh: Q — R not vanishing everywhere, define thero number ¢h) € No U {co} of h
to be the supremum of atl € Ng such that there is a strictly increasing sequexgce: X1 <
X2 < ... < Xpin Q with

h(xi—_1)h(xj) <0 fori=1,...,n.

Since in one space dimensi@hC C(Q, R) we havez: E \ {0} — Ng U {oco}. For further
properties of the zero number we refer the reader to [5, 9}lamdeferences therein.

EO Theorem. Suppose N= 1. Then Zu; _ﬂ) > k — 1 for two distinct elementsjyu; €
W. In particular, z(u) > k — 1 for every ue W . {0}.

Proof. Fork e N it is known that the zero numbersatisfies

2.14) {z(u)gk—z ifk >2, ue Eg ~ {0)

zuy>k—1 ifueEf\{0};

cf. for example [37]. Moreovez: E \ {0} —» NgU {oo} is lower semicontinuous. Consider
Ug, U2 € Wk with vg := ug — Uz # 0. Definingo (t) := ¢(t, u1) — ¢(t, uz) as in the proof of
Theorem 2.6, it is known that(v (t)) decreases ih. Hence using (2.14), similar arguments
as before show that(vg) > k — 1. For the general case, we consideru, € Wk with
vo := Up — Uz # 0, and sefl := min{ T (u1), T+ (uz) } ando(t) ;= ¢(t, ur) — @(t, u)
fort € [0, T). For everyty € (0, T) such that there existgy € Q with v(t)(xg) = 0 and
oxv(t)(Xg) = 0 we havez(v(ty)) > z(v(tp)), for0 < t1 < tgp < to < T; cf. [5]. Since
z(v(t)) € N, there istg € (0, T) such that for everx e Q with v(tg)(x) = 0 we have
oxv(tg)(X) # 0. Thus there exists a neighborhdddof o (tg) in C1(Q) so thatz is constant
on U. A similar approximation argument as in the proof of Theor2® now shows that
Z(vg) > z(v(tg)) > k — 1, proving the claim. O

2.11 Theorem. Suppose that N= 1. Then the restriction of Qb to Wk is a diffeomorphism
onto an open neighborhood U 61fin Elj. Stated differently, Wis the graph of a &-function
U-— E.

Proof. As in the proof of Theorem 2.7 one can show that every noairigngent vecton
of W satisfiesz(v) > k — 1. Hence the discussion above together with (2.14) give®-The
rem2.11. U

2.12 Theorem. Suppose that N= 1, u; € A, uy is a nontrivial solution of(E), and u # us.
Then Zuy) < z(ux — uy).

Proof. First consider the casg € A. Fort >0
Z(uz — up) > z(p(t, u2) — @(t,u1)) = z(uz — o(t, uy)) .

Moreoverp(t, uy) — 0in C1(Q) ast — oo. The arguments in the proof of Theorem 2.10
imply thatz s continuous in; with respect to th€1(Q)-topology. Hence(us—u1) > z(uy).
The general case of; € A follows by approximation as in the proof of Theorem 2.10. ]
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3. Equilibria on the boundary of superstable manifolds

In this section we assume the hypotheses (F1)—(F5). Réeadldtk 1 of equilibria that lie in
the o-limit set of an orbit in the domain of attraction of 0. We démby K" the intersection
of K1 with the positive cone irE, and byK; the intersection with the negative cone. Thus
Kf U K consists of the signed equilibria in the boundary of the daro&attraction. The
set of nodal equilibria will be denoted b} = K1 (KIr U K{). By the strong maximum
principle, a signed equilibrium is either strictly poséior strictly negative irf.

The theorems in this section will be proved in Section 3.1.Da&fgin with the existence of
signed equilibria irk ;.

3.1 Theorem. If 11 > 0, then K" # @ and K| # o.

The existence of signed solutions of E is a consequence d&theus mountain pass the-
orem of Ambrosetti and Rabinowitz [4]. Generically we exp&e solutions in Theorem 3.1
to be of mountain pass type in the sense of Hofer [28].

Surprisingly, the existence of nodal solutions of E on a gardbomain without any sym-
metry is a recent result. We refer the reader to [6, 7, 12, Tfg first results on the existence
of signed and nodal solutions in the boundary of the domaiatwéction are due to Quit-
tner [37,38,40] who treated the case> 0 where 0O is asymptotically stable.

32Theorem. a) If 12 > 0, then Kf N D2 # @.

b) AssumgF6). If 1o < 0and F(x,u) > (Aky—1 + fu(X, 0))u?/2forx € Qand ue R,
then K N Dy, # @.

3.3 Remark. If (F3) holds withay = 0 and if ix,—1 < O, then it is easy to see that the
additional condition in b) of the theorem above is satisfied.

The condition onF in Theorem 3.2b) implies that the energy satisfie&) < 0 for
ue k. Using variational methods one can show that there existsdalrequilibrium if

®(u) < Oforu e E,, near 0. This local linking condition is satisfied ik,—1 < O, for
example. However, in that case we do not know whether there@lal equilibrium irDy,.

It is well known that there are infinitely many equilibria whé is odd inu (cf. [4]). The
existence of infinitely many nodal equilibria has been pdovd6] using variational methods.
We can now find these equilibria on the boundary of the supleliesstnanifolds.

3.4 Theorem. AssumgF6). If f is odd in u, therb is unbounded on KN D for every k> k.
Stated differently, there exists a sequence of equildiia € K; N Dy with @ (ux) — oo as
k — oo.

More can be said in the case of space dimenslogs 1.

35 Theorem. If N = 1, Q = (0, 1), there is a doubly infinite sequengg) C K; (k € Z,
|kl > ko) suchthaty € Dk~ Dk+1, Z(Uk) = |K|—1, Signdxuk(0) = signk and® (ux) — oo
as|k| — oc.
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3.6 Remark. In view of K1 C 6.4, Theorems 2.9 and 2.12 are applicable to the solutions of

(E) we have constructed. This yields the following extrepralperty: Suppose thay € Kj.

If up € ST anduy > ug, thenuy > 0. Similarly, ifu, € S~ andu, < uy, thenu, < 0. This

extremal property has also been proved for the solutionstoaeted in [6]. As a consequence

we note that two distinat, u, € K1 that are comparable must be signed with opposite sign.
In the case oN = 1, in addition we can say the following: ify € Ky, and ifuz is a

nontrivial solution of (E) different fronuq, thenz(uz) < z(uz — uy).

3.7Remark. a) Inthe one-dimensional case the existence of infinitelgynsalutions has
been proved by Struwe in [45] for more general boundary vploblems. In addition
to the new dynamical information contained in Theorem 3o #lhe fact that one has
nodal solutions with precisellk nodal domains for eack > kg is not contained in
Struwe'’s paper.

b) There are many results on nodal solutions in the radihgetvhenN > 2. We refer
to the paper by Conti et al. [16] for references in this di@tt There one also finds a
dynamic point of view based on the heat semiflow which is egléb our approach. The
use of zero number techniques can yield more detailed irgtbam in this case than in
the nonradial case.

c) It follows from results in [32, 50] that in Theorem 3.5 thet &, can be replaced by
Ko i={ue K~{0} | v € Z: alv) = {u}, () = {0}}; see also the remarks
following the statement of [20, Prop. 1.1]. It seems to be panoproblem whether
Theorem 3.1 holds witlK, instead ofK1. It was shown in [11] that generically if all
equilibria are hyperbolic, hence isolated. If all equiltbare isolated then we have of
courseKq = Ko.

3.1. Proofs of the results about existence of equilibria

Condition (F3) ensures thdt satisfies the Palais-Smale condition, i.e. every sequenge-
E such that® (uy,) is bounded above ar@l’(u,) — 0 in E’ is precompact. Her&’ denotes
the dual ofE. As simple and well known consequence of (F3) and (2.1) we mathout
proof:

3.8Lemma. If Y is a finite dimensional subspace of E, then

im ®Uu)=-o00.
lul]— o0
ueY

Moreover YN A is bounded.

Proof of Theoren3.1 SinceW; is an open neighborhood of 0 i, by Lemma 3.8 the set
U := Wy N E;1 is a bounded open neighborhood of Olq. It follows from the comparison
principle thatU is connected. Leti™, u~ € D; denote the boundary points bf, such that
+u* e PE. Pickuy € w(u¥). This is possible by Lemma 2.3. Therug € D1 N K NPE.
Now an argument as in the proof of Theorem 2.6 shows that tisefe,) € Wi N PE
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converging tmg. Moreover,O, ({un}n) € PE by the maximum principle, anBE is closed.
Using this information and Theorem 2.4c) we fir(q’ # @. The proof ofK; # @ is
similar. O

Proof of Theoren8.2a) By Theorems 2.4a), c) and 2.6 it suffices to show ats @. From
Theorem 2.7 it follows that the restriction §§ toW>N E5 is a diffeomorphism onto an open
neighborhoodJ of 0 in Ez. If D2 = @ thenW; is closed, and by Lemma 3\8, N E; is
compact. This contradicts the fact thatis a nonempty open subset of a finite dimensional
space, finishing the proof. O

Proof of Theoren8.2b) As in the proof of Theorem 3.2a) it suffices to show tBg} # .
Leth: U* — E_ be theCl-map defined on a neighborhoat of 0 in E,, whose
graph isW, joc. Putr_ := SURieB,, Eﬁo”h(u)” wherer ;. = ry, is as in Lemma 2.1. Extend

hlg,, £ by a continuous map: E, = Br_E . Pick somew e E; with || = 1 and set

Y = E, & [w]. Here [w] denotes the linear hull of the s@b}. Using Lemma 3.8 choose
R > ry + r_ large enough such thdt(u) < Oforu € Y ~. URY. In view of the assumption
made we find fou € E,

d(u) = %(Vu, Vu) — /Q F(x, u(x))dx

< auuw- %/Q(,lko_l—}- fu(x, 0))u(x)2 dx

(3.1) 2
1 1
= 5(Lu,u) - ézko_llu@
<0

Define
M::{v—l—SwlveE';), lo +sw| <R, s>0}

and denote byl the boundary oM in Y. By (3.1) and the choice d® we have® (u) < 0 for
u e Mp. We claimthatify : M — E is continuous angr|n, = id|m,, theny (M)NS, # 2.
To see this, consider the continuous mapM — Y given by

k() i= Py (U) — h(REy ) + h(IPE y (Ww) + RSy W w .

Clearlyx|v, = id|m, SO that by a degree argumevitC x(M). Moreover||ryw~+h(ryw)| <
r.+r_ < Rgivingr w+ h(r;w) € M. Hence there is € M with x(u) = r,w + h(ryw).
It follows that || P w (u)|| = ry and Py (U) = (P w(u)), thusy (u) € S, The claim is
proved.

We need to construct a modification of the semiflewas follows: Define

r(u) :=inf{t € J(U) | ®(p(t,u)) <0} .

By (F6) T (u) = oo if 7(u) = oco. Therefore we can set for> 0

p(t,u) t <z(u)

pLw= Imr(u), H tze.
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Theng is a global continuous semiflow db. If ® (g (t, u)) > Othent < T, (u) andg(t, u) =
p(t,u). If ®(u) < 0thenp(t,u) =uforallt > 0. Moreover,® is a Lyapunov function for
Q.

Now suppose thatt,) C Rg with t, — co asn — oo. The construction oM andg,
together with what we have proved above, shows that for edbbre isu, € ¢ (S,) N M.
It holds that® (¢ (th, un)) > 0 by Lemma 2.1. Thug(tn, un) € S, for all n. SinceM is
compact we may assume that - u € M. Using Theorem 2.4b) we conclude that Dy,
and finish the proof. t

Proof of Theoren3.4. First we show that

(3.2 KiNnDx#@ fork>Kkp.

Therefore, fixk > kg and letY be a finite dimensional subspaceivith
(3.3) dimY > dimE, .

Leth: Ut — E_ be theCl-map defined on a symmetric neighborhddd of 0 in Elj
whose graph i8V joc. Putr_ := suq,eBrkEleh(u)H wherery is as in Lemma 2.1. Since

f is odd inu, h is an odd map also, ang is odd in its second argument. EXtehHs,kElj

by an odd continuous malp: Elj — Br_Eg. FiX R > r¢ +r_ such thatd(u) < O for
u €Y ~\ URY. We claim that ify : BRY — E is odd and continuous, withr|s,y = id|ssy,
theny (BRY) N & # @. For a proof of this fact set

Vi={ueURY||P yI <rg}= c//_l(Ek_ + U E) NURY .

ThenV is a symmetric, bounded and open neighborhood of ¥.inSetX := oyV, the
boundary ofV in Y. Itis easy to see that

(34) w(ZNURY) C Ef + S, E .

Definex: £ — E, by
r(U) := Py (u) —h(RTy (W) .

Thenk is odd and continuous. By virtue of (3.3) and the theorem afsBk-Ulam there is
ue X withx(u) = 0. Ifu e SRY theny (u) = uand thusP, u = ﬁ(PkJru) fromx(u) = 0.
Moreover||P,u| < r_ by the choice of, and|| P ull < ri by the definition ofE. Hence
Jull <rq+r- < R, acontradiction. Therefore € UrY. By (3.4) | P (u)|| = r, so that
together withe (u) = O we findy (u) € &. The claim is proved.

As in the proof of Theorem 3.2Db) it follows from (F6) and fronh&t we have shown above
that Dy # @. This proves (3.2) in view of Theorem 2.4c).

Now if ® was bounded oi1M D, for somek; > ko, thenK1 N Dy, would be compact as
a consequence of the Palais-Smale condition. Since &eiyclosed and sincBy,1 C Dy,
from (3.2) it would follow thatﬂkzko Dk # @, contradicting Theorem 2.4d). The proof is
complete. O
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Proof of Theoren8.5. Recall the relations (2.14). Also recall that dig = 1 for all k €

N. The existence ofi; in the casek = kg = 1 is covered by Theorem 3.1. Fix some
k > max ko, 2} and denote by an eigenfunction ol for the eigenvaluely such that
oxe&(0) > O and|jec|l = 1.

From Theorem 2.11 we deduce the existence of an open nelgidmbld of O in Elj and
aCl-maph: U — E, . such that\ is the graph oh. For some > 0 small enough, by
Theorem A.12c) the imagéoc of Uy Elj under the map — (u, h(u)) satisfiesO, (Vioc) C
Bk. SinceWk,1 is the graph of &£*-function mapping an open neighborhood of @, , into
Ek_+1 and sinceDy. 1 N Wk = @, the setVioc ~ Wiky1 has exactly two connected components,
open inW. The same holds true fdn‘k . Wk+1. Denote the component &y that contains
(¢ex, h(ee)) for smalle > 0 by V, |0C and the other one by, .. If u e Vlgc, theng(t, u) stays
in one component dfix \ Wk, 1 and therefore never entevs .. The same holds the other way
around. Now we defin¥* := O_ (Vloc) By the observation abovevV*, V~} are invariant
nonempty disjoint (relatively) open subsetsvigf coveringWik ~ Wi41.

By Corollary A.11, ifu € Wk ~. Wk41 then

ptu)
% llot, Wl
Clearlyz(u) = +e foru e V*.
The setM = E, . ; N W is a 1-dimensional submanifold & containing 0, andM N
Wi+1 = {0} by Theorem 2.10. Thus

t(u) = € SEx={e&, —&} .

(3.5 zuy=k-1

foru e M ~ {0}. From Lemma 3.8 we deduce thdtis bounded, and it is a graph ovEg in
E,1- We find boundary points™ e Dy of the connected component Bf containing 0 such
thato* e M NV,

In order to construatl, we now restrict our attention . The construction ofi_, from

~ proceeds analogously. There is a sequdngg C M N VT converging tav*. By (3.5)
and Theorem 2.4c) there existge Ky N DN V+ with z(uy) = k- 1.

Next we show thabyuk(0) > 0. Sinceuyk solves (E) we havéyuk(0) # 0. Consider a
sequencéwn) C VT converging ta, in C1. We may therefore assume tlagion (0) # 0 and
z(wp) = k — 1 for all n. For fixedn, the integer valued function— z(p(t, wp)) is constant
sincewn € Wk. This implies thatke(t, wnr)(0) cannot change sign as— oo.

Recall that sinceN = 1, with the notation of Section A.2 we may choose the densely
injected Banach coupleXo, X1) = (L2(Q), H(Q) N Hol(Q)) to analyze the semiflow. Here
L i= —A € H(X1, Xg) andE = Xy,,. Take somef e (3/4, 1), thenX; — CL(Q).
Applying Corollary A.11c) we know that

(p(ta wn) T(wn) _ S
lo(t wa)llx, — llz@n)llx, — l&lixg

in Xz ast — oo.

Thereforeoyxp (t, wn)(0) > O for larget and fixedn, and by the considerations above
oxwn(0) > 0. This shows thatyxuk(0) > 0.
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Finally we prove thatb (ux) — oo as|k| — oo. Clearlyzis continuous orK ~ {0} in the
C1(Q)-topology. Observe also thatk) C Dy,, So that by 2.4ajuy) is bounded away from
0. By Theorem B.2a) the topologies 6£(Q) and E coincide onK. If ®(uy) is bounded
for a subsequence @tik), there is a subsequence converging<iras a consequence of the
Palais-Smale condition. The observations made above ibqaipdedness of the zero number
along this subsequence, contradictatigyx) — oo as|k| — oo. O

A. Abstract semilinear parabolic problems

In this appendix we prove various properties of the semiflbabstract autonomous semilin-
ear parabolic problems. Some results are variations ohgallg known results. These are
included for the convenience of the reader. In other casgeowe strengthened versions, and
we give proofs for folklore statements we did not find a rafesefor. We refer the reader
to [3, 18, 25] for general background. We also construct tipesstable manifolds and prove
some basic properties which hold in a more general context.

We say that Xg, X1) is a densely injected Banach couple<if and X; are Banach spaces
and X is densely injected itXg. By H(X1, Xo) we denote the set of thoge € L(X1, Xop)
that are negative generators of a strongly continuous aoakgmigroup onXg if considered
as operators itXp with domainXj.

Let[-, -], for a € (0, 1) denote the complex interpolation functor of exponenBy X,
we denote either

e the fractional power space generated by the fractional ppwkEA + v, where A €
H (X1, Xp) satisfiess (A) C [Rez > —w] for somew € R

or
e the interpolation space{p, X1],.

The results presented here hold with either definition. Rorapplication to the concrete
problem (P) there will be no difference, since thérdas bounded imaginary powers.

For convenience, ifi, 8 € [0, 1], we use the notatioff-||l, = |-llx, and ||-lla.p =
112X, X p)-

A.1l. Linear integral operators

Let (Xo, X1) be a densely injected Banach couple. Rix H(X1, Xp), @ € [0, 1). We write
U(,s):=e 9%fors teR,s<t.

Since existence theory of semilinear equations is baseteowudriation-of-constants for-
mula, it is convenient to state some properties of corredipgnintegral operators. The next
lemma is a variant of [18, Lem. 5.5]. We emphasize the extgt@f bounds that are indepen-
dent of the length of the considered interval.

A.l Lemma. Fix J = [to, t1] with tg < t; and define an operator H by setting for ¢
Loo(J, Xo):

t
H(@)() = / Ut 9)g(s) ds

to
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ift ed.
a)lf0<a < f <1lthen

H e £(Lo(J, Xg), C#7%(J, X,)) .

b) If0 <y < 1then
H e L(C"(J, Xo0), C(J, X1)) .

In either case, it (A) C [Rez > 0], the norm of H is bounded independently of the length of
J.

Proof. We prove this lemma assuming thatA) C [Rez > 0] for simplicity. Without this
assumption the statements remain true, but the constgmsd®n the length o .
Choosavn > 0 such that (A) C [Rez > w]. Set|J| :=1t; —tg. Forx < 1,y > 0 define

y
k(X,Y) :=/0 s *e “°ds.

Thenx is monotone increasing . Sincew > 0, for allx € [0, 1) andy > 0
(A1) kX, y) < lim k(x,r)=T(1-x)e* ! <o00o.
r— oo
a)Puty .= f —a,sothat0< y <1 — a. From [18, Prop. 6.8] it follows that

IUt, Sl < Cla)e™ 9t — )™

fors < t, sothat fort € J:

t
/ U(t, s)g(s)ds
(A.2) ©

t
< C(@) 9l t (t—s)*et"92ds
0

= C(@)lI9llocr (@, t — o)
< C(a)l19llc
by (A.1).
It is sufficient to consider the case < S, so thaty > 0. We follow the proof of [18,
Lem. 5.5]. First we remark that fare [to, t1]

(A.3) U(-,s) € C7([s, ta], L(Xp, X,))

with Holder norm bounded by a constant independerg, @ andt;. This can be seen by
carefully inspecting the proof of [18, Lem. 5.3(b)] and gsiFheorem 6.6 and Proposition 6.8
loc. cit.

Lettop <r <t < t;. Using Proposition 6.8c. cit. and (A.3) we find fors € [tg, r):

IU(t, ) — U, S)llow < IUET) =UENDlgalUE,S)los
< Cla, p)t—1) (r —9) Pe =9
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giving
WU¢9—um9mﬂmscwﬁm—myr«—9”€mﬂws
to to
= C(OC, ﬁ)(t - r)yk(ﬂa r— tO)
< C((X, ﬂ)(t - r)V

as above. Moreover
t t
[ U@ 9loads < c@ [ -9 ds=Clt-ni.
r r

It follows that

r t
(U(t,s)—U(r,s))g(s)ds-l—/ U(t, s)g(s)ds

to

< Clo Aligloe (=) + @ =1)*") .
For|t —r| < 1 we thus have

IH(@) (1) — H@)T)lla < 2C(a, A)lIOllclt = 1|

and for|t —r| > 1 we have, using (A.2),

IH @) ®) — H@) @)l =

a

IH@) ) — H@ M) lla < 21H(@)lloo < 2IH(@)lloolt =" < 2C(a, A)lIGllclt — 1|

which proves the claim.

b) We have
t
(A.4) H(@®) = /t U(t, s)(9(s) — g(t)) ds+ (1 — U t, to)) A 1g(t)
since

d -1 _
d_sU (t,s)A g(t) =U(t, s)g(t) .

But A~1g: J — Xj is continuous andl (-, tg): J — £(X1) is continuous with respect to
the strong operator topology (see [18, Def. 2.3]). Theretbe second term on the right hand
side of (A.4) is continuous as a map frahinto Xj.

LetT :=t; —tpandsetAt :={(t,s) |0<s<t<T}andAtr :={(t,s)|0<s<t<
T }. Puta(t, s) := U(t, s)(g(s) — g(t)) fort, s € J withs < t, andb(t, s) := a(t +tg, S+ to)
for (t,s) € At. Thenb € C(At, X1) and

Ib(t, s)ll1 < Cligllcr (3,x0)t — )
for (t,s) € At by [18, Prop. 6.8]. Define

t
v(t) ::/O b(t, s)ds
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fort € [0, T]. Then [18, Lem. 5.8] gives us € C([0, T], X3), and thus

t
/ at,s)yds=o(t —tp)
t

0

is continuous fromJ into X1. We have shown thatl (g) € C(J, Xj).
Lastly, from (A.4) and (A.1) we find, using Theorem 6.6 andgersition 6.8 in [18],

t
IH@OI < [ 1V 9l0219® = 9Olods
+ (141U € t0)l122) 1A Mol g0

t
< Cligller 2.0 ( / (t — sy ~le -9 ds ¢ 1)
to
< Clldllcr (3, x9x(Q—y,t) + 1)
< Clgllcr (3,%o) -
This finishes the proof. 4

A.2 Corollary. Fix J := [tp, t1] with tp < t1 and define an operator K by setting forexXo
and ge L (J, Xp):

t
K9 == U tox+ [ U9 ds

to

ift ed.
a) If0<a <p <1, then

K € L(Xg x Loo(J, X0), CF7*(J, X)) -
b) If0 <y <1then
K e L(X1 x C" (3, Xo0), C(J, X1)) .

In either case, it (A) C [Rez > 0], the norm of K is bounded independently of the length of
J.

Proof. This follows easily from Lemma A.1 using Corollary 5.4 andebnem 6.6 in [18]
together with (A.3). O
A.2. The parabolic semiflow

Suppose thatXp, X1) is a densely injected Banach couple. Fixe H(X1, Xop), a € [0, 1)
and suppose moreover that X, — Xg is Lipschitz continuous, uniformly on bounded
subsets.
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Consider the Cauchy problem

(A.5) [U(t) + Au(t) = f(u®) t>0

u(0) = up Up € Xy -

A solutionof (A.5) is a functionu € C(J, X,) N CX(J, Xo) whereJ := [0, T), J := (0, T),
for someT > 0, such that(t) € X; for allt € J and such thati(0) = ug. A solution of
(A.5) always satisfies the variation-of-constants formula

t
(A.6) u(t) = U(t,to)u(to)+/ U, s)fu@s)ds beld, telt,T).

to

A mild solutionof (A.5) is a functionu € C(J, X,) that satisfies (A.6).
We also need to consider a linearized form of this equatiénf £ C1(X,, Xq), J =
[0, T), andu € C(J, X,), consider the Cauchy problem

(A7) [0@) + A = F'u®p® £ 0

v(0) = vg vo € X, .

It is easy to see, using the results from Section A.1, thagveryog € X, there is a unique
mild solutiono (t) of (A.7), i.e.v € C(J, X,,) satisfies

t
v(t) = U(t, to)o(to) —|—/t U, s) f'(u(s))v(s)ds ttoe J, tg <t.

Moreoverp € C(J, Xp) for everyf in [0, 1).

A.3 Theorem. For every i € X, there is a maximal I(ug) € (0, oco] such that setting
J = J(up) := [0, T4(ug)) and J := J ~ {0} the Cauchy problengA.5) has a solution
u e C(J, X,) N CL(J, Xo) N C(J, X1). These solutions induce a local continuous semiflow
@ on X,. We set
D:i={(tueRfxX,|teI)}

andD := D ~ ({0} x X,). Fors > 0we also set
Ds:={ue X, |(s,uyeD}.
Then we have the following additional properties:
a) If |o(t, ull, is uniformly bounded on @) for some ue X,, then T, (u) = oco.
b) Dis openin0, o0) x X, andDs is open in X, for all s > O.
c) Themap T: X, — (0, co] is lower semicontinuous.

d) ¢: D — X, iscontinuous, and locally Lipschitz continuous in its setargument.
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e) Foreveryp € (a,1),¢9: D — Xy is continuous, and locally Lipschitz continuous in its
second argument.

f) If f € CL(X,, Xo) uniformly on bounded subsets, thenD — X, andg: D —
Xy are continuously differentiable in the second argumentatb$ € (a,1). Ifu €
C(J, X,) is a solution of(A.5) andvg € X,, theno(t) := De'(u(0))vg is the mild
solution of (A.7).

g) For fixed Te (0, 00] and V C T 1((T, 00) U {o0}), and every: € [0, T) we put
M) = ] ot V).
tele,T)

Then, if M(¢1) is bounded in X for somes1 € (0, T), also M(e») is bounded in X for
all e € (1, T).

A.4 Remark. The local Lipschitz property d) is to be understood as foHlowiror every
(to, Xp) € D there is a neighborhodd of (tg, Xg) in D and a constar® such that

o, x) — o, Ve < ClIX =Yl
for all (t, x), (t, y) € U. A similar remark applies to e).
As a simple consequence of the preceding theorem we note:

A.5 Corollary. Assume that A has compact resolvent. If T and V are as in TimeArag)
and M(e1) is bounded in X for somee; € (0, T), then M(e2) is precompact in X for all
S €]0,1) andez € (61, T). In this case we say thatis acompactsemiflow.

If V is precompact in X and M(e) is bounded in X for all ¢ € (O, T), then M) is
precompact in X

Before giving a sketch of the proof of Theorem A.3, we provechhical result, a special-
ized and strengthened version of [18, Lem. 16.7].

A.6Lemma. For f € [a,1) and T, p > Othere is a constant G= C(a, f, p, T) such that if
te (0, T]andu o € C([0,1], X,) are mild solutions ofA.5) satisfying

sup [[u(S)lla, supllo(S)lla <p,
se[0,1] se[0,t]

then
lut) — o ®) s < Ct*#u0) = v ()|, .

Proof. Lett, u, v be given and pui := u — ». For everyr € [0, t] we estimate

lw(@ g < IU(z, 0)lapllw(0)q +/ Uz, 9) ol f(u(s)) — fv(s)llods
(A.8) 0

< Clo, AP w04 + C(B. ) /0 (t =9 Jw(©)]l, ds.
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Settingf = « in this inequality and applying Gronwall’'s lemma in the foaf{18, Cor. 16.6]
(note that it's conclusion also holds on subintervals witmdorm constant) we find

[w(S)lla < Cla, B, p, T Iw(0)la
for s € [0, t]. Plugging this inequality into (A.8) with =t proves the lemma. 0

Proof of TheorenA.3. The existence of a unique solution of (A.5) and of the assedisemi-
flow with properties a)—c) and f) is proved in [18, Sects. 6%,1d) is proved in a slightly
weaker form in [18, Thm. 16.8], but the proof is easily extetdo yield our statement d).
Using Lemma A.6 above, e) can be proved exactly as d). Thenuanis differentiability of
¢ in its second argument claimed in f) follows from results 18] Sect. 18], together with
similar arguments as used in the proof of Lemma A.6.

We prove that a solution of (A.5) actually also lies irC(J, X1), as claimed in the first
statement of the theorem. Fix somee J. Thenu(e) € X1 and Corollary A.2a) gives
u e CA (e, T4-(Ug)), X,) for B € (a, 1). Thereforef (u(-)) as a map fromd, T (ug)) to
Xo is Holder continuous and Corollary A.2b) givasse C([e, T+(up)), X1). Lettinge — 0
the claim follows.

g) Fix someT; € (e2, T). We may assume that(A) C [Rez > 0]. Otherwise ad@du to
both sides of the differential equationin (A.5), where < inf{Rez | z € o (A) }, and replace
f (u) by f (u)4+wu. As a consequence the norms below do not deped.dRix someug € V
and putu(t) := ¢(t, upg) fort € J(ug). Also choose some fixed e (¢1, ¢2) andf € (a, 1).
Applying Lemma A.1a) yields that € C([e, T1], Xp), and the norm is independent o
becauseM(e1) C X, is bounded. Again by Lemma A.la), e C/~%([e, T1], X,). Now
Lemma A.1b) givesu € C([e2, T1], X1) with a norm independent afp. LettingT;y —» T
proves the claim. O

A.3. Asymptotics of perturbed linear equations

For our applications it is crucial to have exact knowledgeha convergence rate and the
direction of solutions converging to an equilibrium. THere we consider the original equa-
tion as a perturbation of the linearization at an equilibriuThe statement of our results is
mainly inspired by [14, Appendix B], but we have also provatieorem for the case of con-
tinuous time dynamics. As the proof of [26, Thm. 2], whichhg basis for these results, is
sketchy at a central point, for convenience of the reader me gpme more detail (see the
proof of Theorem A.9). The proof of Theorem A.10 uses ideasnfthe proof of the corollary
to [26, Thm. 2]. Corollary A.11 is a strengthened versionarhe results in [14, Appendix B].
We start with a technical Lemma.

A.7 Lemma. Let(pn) C R U {oo} and (xn) C R{ be sequences with, — 0as n— oo,
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andletab > 0. Put

[ bpn — xn (1 + pn) :
if pn < 00
a+xn(1+ pn)
on = 1 b— .
pn Kn |fpn:OO, Kn>o
Kn
LOO ifpn:OO,Kn:O.

. . ~ 9 . .
a) It holds thatlmlorcl)f Pn > allmlorcl)f Pn-

b) Ifb > aandpni1 > ppforalln € N, thennlim pn exists and eitherlim p, = 0 or
— 00

. n— oo
lim ppn = oo.
n— oo
Proof. a) In the case liminf,pn = 0 the claim is trivially true. In the case

liminf,_ pn > 0 it suffices to prove that if lij, . pn € RT U {00} exists, then

liminf p, > b lim
n— oo Pn = an%oopn )

For limn_ s pn = oo the definition ofp, implies limy_ o pn = 0. If limp_ o pn € R then

e o b—rxn(1+1/pn) b
liminf py = liminf =—1lim pp.
n— 00 n—oco a/pn+krkn(l+1/pn) an-o

b) Suppose that limsyp,.,pn > 0. There is a subsequendggn,) of (pn) with
limsup,_, o Pn = limk_ o pn, > 0. Applying a) to this subsequence we find

. . o b .
lim pn, > liminf pp,41 > liminf g, > — Iim pp, .
k— o0 k— o0 k— oo a k—oo

Hence lim sup_, , pn = 0.
We finish the proof by showing that for eve@/ > 0 there isng such that ifn > ng and
pn > C it follows that pn,1 > C. To see that this claims holds, assume that- C > 0.

Then

b—xn(141/pn) - b—xn(1+1/C)
a/pn+xn(l+1/pn) ~ a/C+xn(1+1/C) —
if nis large enough. O

pntl > pn =

We also need the following facts which are easy to prove.
A.8 Lemma. Supposés,) and (t,) are sequences iR™* such that — oo. For every a> 0
the following hold:

a) limsup_, S

/tn

< aifand only iflimn_ o Shy " = Oforall y > a.

b) lim infnﬁoosrl, > a if and only iflimn_ o Say ™" = oo for all y € (0, a).
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A.3.1. Discrete dynamics

Let X be a Banach space aifde £(X). Define the compact set ;= {|1| | 4 € o(T)}.
Fory € ]Rar < A let PT(y), P~(y) denote the projections iX corresponding to the spectral
setso (T) N[|z] < y]lande(T)N[|z] > y] respectively. The maps — P*(y) are locally
constant oiR} \ A.

A.9 Theorem. Let (xn) € X ~ {0} be a sequence satisfyifign+1 — T Xl = o(||Xnl|) as
n — oo, and let(a, b) be a bounded component Bff . A. Then one of the following
alternatives holds:

(i) Foreveryy € (a, b)

P~(y)x :
[P=0)%all _ =0 — o
n—oo [PH(y)xnll  n—oo
andliminf||x,||¥" > b.
n—oo
(i) Foreveryy € (a, b)
P~(y)x :
[P=0)%all _ =0
n=oo [PH(y)xnll  n—oo

andlim sup|x,||Y" < a.
n— oo

Moreover,
min A < liminf[x,|¥" < lim sup|xa|¥"
n—oo

n— oo

< maxA .

Proof. Fix y € (a, b), setX® := P¥(y)X andx® := P¥(y)x for x € X. By choosing an
equivalent norm inX we may assume that

I TX|| > byIx]| Xe X~
ITX| < ag|X|l xe Xt
wherea < a1 < y < by < b. Putyn := Xnt1 — T Xy andxp = [[yall/[[Xnll = 0 @asn — oo.

Fix C > 0 such that|P*(y )| < C. Then
Xop1=TXy +Yn
Xr-:_+1 =Txi +yy
so that

X gl = ballxy I = Crn(I1%q 11 1% 1)

(A.9) i
IIXrTHII < arllxF Il + Crn(lIXy | + 11X -
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Define
%7 |l

pn = IXT
% if x| =0.

if Ix3l >0

Then
[ b1pn — Crn(1+ pn)

a; + Crn(1+ pn)
bl - CKn
Ckn

o0 ifpn:OO,Kn:O

|fpn<OO

n-

v
™

Pn+1 if Pn =00, Kn > 0

By Lemma A.7 eithep, — oo or p, — 0. In the first case, for large
1 _
EIIXn < Ixnll < 21511 -

Together with (A.9) we findb; € (y, by) with [[x 1]l > bz[x7 || for largen. With some large
no it follows that

a1 1\
I Xnlly nZEHXn lly nZéllxnoll(?) y " — oo

asn — oo. In the case that, — O, for largen
1+ +
EIIXn I < Ixnll < 2171 -

By (A.9) there isa, € (ay, y) with ||XrT+1|| < ap||x;|| for largen. Similarly as above it follows
that||xy|ly =" — 0 asn — oc.

The alternative is independent of € (a, b) since P*(y) is independent. The other
statements follow easily from Lemma A.8 and the considenatabove. O

A.3.2. Continuous time dynamics

In this section we study the behavior of the semiflevgiven by (A.5) near an equilibrium
point via linearization. We suppose in addition to the hjygses of Section A.2 thdt e
C1(X,, Xo) uniformly on bounded subsets ari@0) = 0.

SetL := A— f/(0) andg(u) := f(u) — f’(O)u foru € X,. Then for every > 0 there
isC(e) > O with

1f'@ullo < 1 f'©)llg0llulle < ellullz+ C(e)llullo

for u € X1, by interpolation inequalities and Young’s inequality. ride by [3, Theo-
rem 1.1.3.1]L € H(X3, Xo). The problem

u(t) + Lu(t) = g(u()) t>0

A.10
( ) u(0) = ug Up € Xy,
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is equivalent with (A.5), and moreovgf(0) = 0.
If ug, uz € C(RY, X,) are solutions of (A.10) withij(t) — 0 ast - oo (i = 1,2),
defineB € C(RY, £(X,, Xo)) by

1
(A.11) B(t) ::/O g’ (st (t) + (1 — s)ux(t)) ds.

Thenov := uj — Uz is a solution of
(A.12) o(t) + Lo(t) = Bt)o(t) .

Similarly, if u € C(RY, X,,) is a solution of (A.10) withu(t) — 0 ast — oo, define
B € C(R{, L(Xq4, X)) by

(A.13) B(t) :=g'(u(t)) .

Theno(t) := De'(u(0))vg is, forovg € X, a mild solution of (A.12) by Theorem A.3f). In
any case| B(t)|/40 — Oast — oo.
In order to state the results about the asymptotic behavecset

A:={Rei|lea(L)}.

SincelL is sectorial A is closed inR. Fory e R~ A let P*(y), P~(y) denote the projections
in Xp corresponding to the spectral setd.) N[Rez > y]ando (L) N[Rez < y]. Clearly
the maps — P*(y) are locally constant oR . A.

Suppose now thaB € C(]Rg, L(X,, Xo)) satisfies||B(t)|l,,0 — 0 and thatyo €
C(R{, X,) is a mild solution of (A.12) withw(t) # 0 fort > 0. With arguments similar
to those in the proof of Lemma A.1 one can show th@y € Xy for all # € [0, 1) andt > 0.

A.10 Theorem. If (a, b) is a bounded component Bf\. A, then one of the following alter-
natives holds:

(i) Foreveryp €[0,1),y € (a, b):

i IP=@o®ls _

= lim Jo(t)||z€’! =
t—oo || P+(y )Z)(t)”ﬁ t—)oo“v( )“ﬁ o0

andliminf||z)(t)||;/t > e 2
t—>o0

(i) Foreveryp €[0,1),y € (a, b):

im ! P=(y)e®llp

= lim [o(t)||se’' =0
t—oo || P+(y )Z)(t)”ﬁ t—>oo||v( )“ﬁ

andlim s,up|z)(t)||;/t <eb,

t— oo
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Moreover, _
e~ SUPA < Iiminf||u(t)||;/t < lim sup||v(t)||;/t < g~ minA
t—00 t—o0

where €*° = 0is to be understood.

Proof. PutP* := P*(y) for anyy € (a, b). Also setx™ := P*x for x € Xq. Forr > 0 and
t € [0, 1] we defineB;, (t) := B(r +t). By [14, Appendix A], for eaclt > 0 ands € [0, 1)
the Cauchy problem

w+ Lw =B {w s<t<1
w(S) = wo wo € Xo

(A.14) [

has a mild solutiono € C([s, 1], Xp) N L1((s, 1), X,). For notational convenience we
introduce the corresponding “evolution operattly’(t,s) (0 < s < t < 1) by defining
Uy (t, S)wo := w(t) wherew is the mild solution of (A.14). Then

(A.15) Ur(t,s)o(r +s)=o(r +1t).

PutV(t,s) := e “=9 for t > s. By [14, Theorem A.1] there are constafg C1 > 0
such that

(A.16) kp(r) == sup[[V(t,0) —Ur(t,0)l55 < Co sup |IBr(t)llso0
tel0,1] tel0,1]

and

(A.17) IUr(L,O)g.p < IV O)gp+1IV(A 0 —U(1,0)p5 < Ci

hold for all 5, p’ € [0, 1) andr > 0. HereCy andCy depend oL, S, f’, a, but not onr. It
follows thatxg(r) — 0 asr — oo.
Forn e Noandp € [0, 1) defineT, Th € L(Xp) by T :=V (1, 0) andT, := Un(1, 0), so
that
IT = Thllgp < xp(n) = 0

asn — oo. As a consequence of (A.15) we have
o(n+ 1) =ThwoM) =Ton)+ (Th — T)o(n) .
Moreover, the spectral mapping theorem [31, Cor. 2.3.1tigie

(A1 heaMIN{O={e?|L1eA}.

Fort > O put
lo”(Ollp :
—_— fot(t)#£0
pp(t) := { loT®)llg T #
00 if oT(t) =0.

By Theorem A.9 exactly one of the following alternatives kg
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(i") Foreveryy € (a, b)
i VAL —
lim lo(m)llge’" = lim_pp(n) = oo
(ii") Foreveryy e (a, b)
i VAT _
nlmm||0(n)||ﬁe = nleoo pp(n) =0

Suppose for somg e [0, 1) alternative (i) above holds true. Then for evegy € [0, 1),
(A.17) implies

lo(n+ Dllg = ITaoM)llg < I Tallg.plloMlg < Cillo)llp

whereC; is independent ofi. Thus
n 1 (n+1) —
lo(M)]lpe™ > C—Ilv(n+ Dllge e’ > o0
1

forall y € (a,b) asn — oo, so that alternative i holds forp’. If alternative (i) holds for
B, exchanging the roles gf andp’ in the argument above, we see thd) @ilso holds fors’.
This shows that the validity of alternativé)(or (ii’) is independent of < [0, 1).

Now fix any g € [0, 1) andy € (a, b). There are constan,, C3 > 0 such that

IV(s, 0)xlig = Callxllg x e P™Xp

(A.18) .
IV(s, 0)xllg < CsliXllg XxeP"Xp.

holds for alls € [0, 1]. Fix C4 with || P:l:”ﬁjﬁ < Cg4. For everys € [0, 1] and everyt > 0 we
have from (A.15)

T (t+5)=V(s, 007 (t) + P (Ui(s,0) — V(s, 0)o(t)
oF(t+59) =V(s, 007 (t) + PT(Ut(s,0) — V(s,0)o(t)

so that
o™t +5)llg > Callo~()llg — Carpg®) (o™ ®)llg + loF (1)])
lo*(t +9)llp < Callo*®)llp + Carg O™ ®)lIg + loTMD)1p) -
Setting
[ Copp(t) — Carpg()(1+ pp(t)) ,
Cs + Carp()(1+ pp (D)) T op0) < o0
p(t) ;== 1 Co — Cyrp(t .
pO ZCT“("S() if pg(t) = 0o, x(t) > 0
[ 00 if pp(t) =00, kp(t) =0
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it follows that

(A.19) ppt+3s) > p(t) fort > 0,s€[0,1].

If ps(t) = 0 ast — oo, alternative (f) holds. Fors € [0, 1] andn € N
lo(+9)lg < IV(S, 0oz +xpMlloMg < Cllo(N)lig

and therefore
o)t < Cllo([t) | &' Me ¢ 5 o

ast — oo. Sincey € (a, b) is chosen arbitrarily, Lemma A.8 gives lim st%nu(t)nyt <

e P,

Now suppose thaiz(t) A 0. There is a sequentg— oo such that lim_, « pp(tk) > O.
By Lemma A.7 we have limint, p(tk) > 0. From (A.19) we find a sequenc¢ex) C N
with limg_, o pg(nk) > 0. Thus alternative i must hold, i.epp(n) — oo asn — oo. By
Lemma A.7 agaip(n) — oo and by (A.19) agaimg(t) — oo ast — oo.

We need to show the remaining statements about the asyoptotialternative (i). For
n € N ands € [0, 1] we have with (A.15) and (A.18)

lo(+8)ll5 > Callo~(M)llg — Callot (M)l — g (M) [0 ()]
_ Czpﬁ(n) —C3 B )
B (||U(n)||/3/||v+(n)||ﬂ kp(N) ) llo(Mlg
> (M
pp(n) +1

C
{uu(n)nﬁ

- Kﬂ(n)) o)1l

IV

for n large, sincez(n) — oo. Thus
t _:2 [t]or (t=[tD
“U(t)“ﬂey > > ||v([t])||5eV e’ - 00

ast — oo since (i) holds. Again,y € (a,b) was arbitrary, so that by Lemma A.8
liminfy, oo flo )1 = €72,
The remaining assertions are simple consequences of thie abosiderations and of The-

orem A.9. 0

We can now sefy(y) = limi_oollo(t)]oe’! for y € R~ A. Theny is locally con-
stant onR ~. A and nondecreasing. Moreover, for evgtye [0,1) we havey(y) =

liMisollo @€’ If x =0, then im0 ()1l = 0 forall g € [0, 1).
A.11 Corollary. Suppose thag = 0.

a) There isi € A such that
x(y)=0 ify <A
x(y) =00 ify > 1
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forall y € R ~. A. For this 4 the following hold:
b) If

Ae (oo, H)NAN(A,00) N A,

thenlimi_, oo [0t 15" = e~ for all [0, 1).

c) Fora,be R~ Awitha < 1 < bsetR := P*(a)— P*(b). Note that R is the
projection corresponding to the spectral setL) N [Rez € (a,b)]. For f € [0, 1)
define

Sp={xePXg|lxlg=1}.

Thendistx, (v (t)/llo(t)llg, S,5) — 0ast— oco. Moreover, ifg’ € [$, 1) and
v(®)/llo®llp > v1e S p ={xe PXp|IlXllp =1}
in Xpr, thenl)(t)/”l)(t)nﬁ — v1/llvallp in Xp.

Proof. Statements a) and b) are obvious consequences of the pespEA and y. To prove

c), fix somep € [0, 1) and putQ. := | — P,. By Theorem A.10 we have
IP~@v(®)llg 0 [P~ (b)o(®)llg
IP*(@v ()l ’ IP*(b)o(t)llg

ast - oo. Thus

IP"@o®ls _ IP~@o (M)l
lo®lp  ~ IPF@ovM®lg — IP~(@0v(M)lg

and
IPT(b)ot)lp - IPT(byot)lp

lo®lp P~ (L)l — IIPFH(bo)ls

Therefore, from
o(t) = P~ (@)o(t) + PT(b)o(t) + Po(t)

it follows that Pyt .
[ Peo()llg 1 and Qv (t)lls

w®l; 1ol
Now set P.o () Q.o (t)
. *U — U
O = 5o YO = 1o

Thenx(t)/I[x(t)]lg € S, and

x(t) o(t)

SNNE
IX®Olig  To®lgll, ~

X1

- X(t)” + 1ly®llg
B

= 1= Ix®llg| + Iy®)lz — 0.
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Hence o)
dist
'Sxﬁ(n ol S”)
ast — oo.

To prove the last statement, suppose thay/|lo(t)[l g = v1 € S p In Xp. This conver-
gence is also true iXz. Hencello(t)|lz/llo(t)llg — [lv1llp and

o0 __o® ®ly | w
®s ~ To®ly To®ly Tty

in Xz ast — oo. O

A.4. Superstable manifolds

In this section we construct submanifolds of the stronglstatanifold of O, if O is an equi-
librium point of 9. Therefore recall the situation from Section A.3.2. We aggpthat(a, b)

with b > 0 is a bounded connected componeniRof A. Fix y € (max0, a}, b) and put

P := P£(y) and X := P£X,. The next lemma is based on [9, Lem. 4.1]. We prove some
additional facts, in particular we give a classificationarigent vectors. We use the notions of
invariance introduced in Section 2 and alsoBet= T+_1(oo).

A.12 Theorem. There are M> 1 andp, > 0 such that defining

Wioc := {u e Z; | [[Ptull, < 7, suple®, u)ll.e' < p},
t>0

the following holds:

a) Wi is a Ct-submanifold of X such that Wi = X, and Woc is C1-diffeomorphic
to U, X under the restriction of P to Woc.

b) Wigc is locally invariant with respect to.
c) Foreveryr> Othereis t> 0 such thaip([t, o), Wioc) € Wigc N Uy X,,.
Consider i € Wige, U(t) := ¢(t, Ug), vg € X, ando(t) := De'(ug)vo.
d) If vg € Ty,Wioc, the tangent space of My at up, theno (t) € Tyw)Wioc fort > 0 and

(A.20) suglo(®) € < 2M[[P oo,
t>0

e) If
suplo(t)]|,€" < oo,
t>0

theno (t) € Tyw)Woc for t > 0 and(A.20) holds.
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Proof. Parts of this theorem have been proved in [9, Lem. 4.1]. Fitebeeference we sketch
their arguments and show how they can be extended to proveaons.

LetU*(t, s) := exp(—P*L(t — s)) denote the evolution operator generated-d*L in
Xa—L. HereU T (t, s) is defined fort > s, andU ~(t, s) is defined fors,t € R sinceP~L e
L(Xy). Foru e Xowe writeu® := P*u. For notational convenience we writg := y, and
we pick someyz € (y1, b), B € (max0, a}, y1) andds € (y2, b).

There isM > 1, depending only o, £ andd, such that
IUF(E, 0)lg,e < Me™ t>0
IUF(E, O)llo, < Mt™%e™ t>0

IU~(t, 0)llo. < M/

IA

A

These operator norms are to be understood for the respeesitrections toX .
We introduce the Banach spaces

Vi i={v € C([0, 00), X,) | suplo(t)[l,€"" < oo}
t>0

with norms|lo|ly; := supsollo®)ll«€"" fori = 1,2. If x € X} andu € L ((0, 00), X,)
defineFx(u) € C([0, 0c0), X,) by

t 00
Fx(u)(t) 1=U+(t,0)X+/ U+(t,S)F’+g(U(S))dS—/ U~ (t,s)Pg(u(s)) ds.
0 t

Fori = 1, 2 it follows as in [9] that ifu € V;, thenu is a solution of (A.10) if and only if
Fx(U) = uwith x = P*up.
Put

K(p) := sup [Ig'(UW)lla,0 -
ueB, X,

Thenk(p) — 0asp — 0. Also set

o0 o0
C .= _m%(u P+||0,0/ t~ei— gt 4 ||P—||0,0/ e(ﬁ_yi)tdt) .
1=1 0 0

Now we choosge > 0 small enough such thkt{p)MC < 1/2. Estimates as in [9] show that
then for everyx € B, om X andi = 1, 2 the mapFy: B,Vi — B,V is a contraction. The
arguments in [9] show that the sets

W = {ueZy | [P*ull, < p/2M, suple(t,u)l.e"" < p}
t>0

are Cl-submanifolds ofX,, given as local graphs of maps, om X — X7, such that

o )
ToW = X(j. SinceW, C W; and theW, are graphs over the same base set, we actually
have

(A.21) Wi =W .
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We now choose € (0, p/2M] small enough such th&ti,; as defined in the statement of the
lemma satisfies

(A'22) VVloc - Up/zxa .
Then a) holds true.
We have
(A.23) sudle(s, Wl <p = Vt>0:sudp(s ot W)l < p
s>0 s>0

ThereforeWq is locally positive invariant. To show local invariance foggative times, sup-
pose we are givea € Wi, (Un) C X4, Uy — U, th > 0,t, —> 0, with ¢ (t,, up) — uand
@ (th, Up) € Wige. We need to show that, € Wy for largen. Sinceu € Wq, for largen

(A.24) lut| < 7.

Picksp > 0 such thae’'® < 2 andg ([0, so], u) € U, 2X,. This is possible by (A.22). We
claim that for largen

(A.25) sufle(s, un)ll.€° < p .

s>0

If this is not the case, extracting a subsequence we may asthanthere existés,) C IR%{{
with

(A.26) 9 (Sh, Un) [l € > p .

Moreover, we may assume that either

(A.27) Sh— s €0, 5]
or
(A.28) Vn: s, > .

If (A.27) is the case, then

1o (Sns Un) 1€ = flg(s, W18 < p,

contradicting (A.26). If (A.28) holds, in view of (A.21)(ty, un) € Wiee, andt, — 0, we
find

lp (Sn, Un) 1€ = ll@ (Sh — tn, @ (tn, Un)) 4 €™
< pe2=stth)ns o eln=rdSotrdn _y e(n=r2% o

This also contradicts (A.26). Thus (A.25) holds for lang@and together with (A.24) it follows
thatu, € Wi for largen.
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From these facts we conclude thatiife Wjoc there isr > 0 such that it > 0,0 € X,
with ¢ ([0, t], v) C By (U)X, andg(t,v) € Wgc, theno € Wpc. This proves local negative
invariance oMo and therefore b).

From the definition oM it is clear thatp (t, u) — 0 uniformly inu € Woc. Together
with (A.23) property c) follows.

Fix up € Wige, putu(t) := ¢(t, up) fort > 0, and putx := P*tug € U,X}. Leth be
the inverse of the restriction & to Wioc. Thenh(x) = up. Fory € X consider the map
Gy: Vi — Vi given by

t
Gy[o](t) = UJr(t,O)y—|—/0 Ut(t,s)Ptg'(u(s))v(s)ds

— /OO U™ (t,s)P d'(u(s))v(s)ds.
t

By estimates similar to those proving tHat: B,V; — B,V is a contraction we find that

1
(A.29) IGyvllv; < MYl + MK(p)Cllvllv, < MIIYlle + EHD”Vl
and
1
(A.30) IGy[v1 — v2]llv; < Mk(p)Cllor —v2llv, < é”vl —02|lv; -

ThereforeGy has a unique fixed point, € V; that satisfiegoyllv, < 2M|y|,.

Now v € V; satisfieso(t) = Dg'(ug)v(0) if and only if » is the unique fixed point
of G,(+. Moreover, ifo € Vi is, for somey e X, the unique fixed point 06y, then
v(0) = W(x)y ando(t) € TyeyWoc for t > 0. This follows from the sentence containing
Equation (4.6) in [9]. These observations prove d) and e). O

A.13 Remark. We have no reference for the local negative invarianc®Vgg nor for the
(global) positive invariance diVigc.

The proof of the fact tha®_ (W) is a manifold is usually based on [25, Thm. 6.1.9].
There are simple counterexamples though that render thattem false as stated. A sufficient
condition onWqc in order to construct a global manifold has been proved iroféra A.12c¢)
above, as we will show in the next theorem.

A.14 Theorem. Define the invariant set

W= {ueZ, |limsuplo, u)|¥t <e®}.
t—> o0

Let Wy be given by Theore®y.12. Then
W = 0_(Wqc) -

Suppose in addition thatim(X;) < oo and that for every t> 0 and every ue D; the
map Dp'(u) € L(X,) has dense range. Then

U ¢ Woo) c W
se[0,t]
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is a submanifold of X for allt > 0, and W is an injectively immersed'@anifold with
ToW = X . If ug € W, 09 € X,, ando(t) := Dg'(Uug)vo, thenvg € T,,W if and only if

limsuplo®)| Yt < e™®.
t—oo

Proof. Let M, p, n andWoc be given by Theorem A.12. Put
W = O_(Wioc) -
First suppose thaty € W and putu(t) := ¢(t, ug). Then
lim sup|u(t)]l.€’t =0
t—o0
by the definition oW and Lemma A.8. For large enough we have
suple(s, ut)1,€° < p
s>0
and||P*u(t)ll, < 7. Henceu(t) € Wio for t large andig € W.
Now suppose thaig € W and putu(t) := ¢(t, ug) again. Then
(A.31) lim sugu(t)||.€"* < oo .
t—oo
Comparingu with the zero solution, from (A.31) and Theorem A.10 we cadelthatug € W.

Suppose now that the statement about the denseness of tpe maids. Putm =
dim(X;). For= C R} let us denote

W(E) = J 9™ Woo) -
teX
For one-point set& = {t} we write W(t) := W({t}). It is sufficient to show that for every
t > 0 the seW(][0, t]) is anm-codimensional submanifold of,,.
By A.12c) there isT > 0 such thap ([T, c0), Wioc) € Wioc. Fix somet > 0. For every
s € [0, t] we have

et +T,W(S) =t —s+T,0(s,W(s))) C ot —s+ T, Wioc) € Wioc
sincet —s+ T > T. HenceW([0,t]) C W(t + T). If u e W([0, t]), there iss € [0, t] with
ue W(s) CW(0,th) CW(E+T).

The arguments in the proof of [25, Thm 6.1.9] show that Bat{s) andW(t + T) arem-
codimensionaC!-submanifolds. Hence thereilis> 0 such thatJ, (u) N W(s) = U; (u) N
W(t + T). It follows that alsdJ, (u) N W([0, t]) = U, (u) N W(t + T). Sinceu € W([O, t])
was arbitraryW([0, t]) is anm-codimensional submanifold of,. We have proved thaw/
is an injectively immersed manifold of codimension In this case the characterization of
tangent vectors follows from A.12 by similar arguments ahaproof thaWv = W. O

A.15 Remark. Theorem A.10 shows that the construction of the superstalaleifolds is
essentially independent ef. This means, using obvious notation, that:if e [a, 1), then
W, = X NW,.

A characterization of tangent vectors similar to that giiethe preceding theorems was
also stated in [11, Lem. 4.b.1].
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A.5. Unique continuation

In this section let Xp, X1) be a densely injected couple of real Hilbert spaces and astwanh
A € H(X1, Xp) is selfadjoint. Choose > — mino(A) and setL := o + A. Denote by
(X4, Ly) for a € [0, 1] the Banach scale generated by fractional powels, @ndowed with
corresponding scalar produgts-), and normg|-||,. Definel': X1/2 ~ {0} = R by

Jull?
') := 122 .
lulig

This function plays a key role in deriving the following goie continuation result which we
use in Appendix B. Itis a variation of [15, Lem. 5.1] (see d&0, 111.6] and [34]).

A.16 Lemma. Suppose that = C([to, t1), X1) N C1((to, t1), Xo), someg € Rand t e
(to, <], satisfies (t) # Ofort e [to, t1). Moreover suppose that there isshL >((tp, t1)) such
that

[act) + Au®)llo < h®)lu®)llz2
fort e (tp, t1). Then for te [top, t1) it holds that

(A.32) Tu(t)) < I(u(to))e?ts
and
(A.33) lu®llo = Callu(to)lloe™ 2

with constants

Cy = e 2INE,

Cri=—-w+ gl“(u(to))e%”h”fz .
Proof. First we remark that fos € X;

_(LY20, LY20)0  (Av,0)o
loll3 Ioll3

Now puty (t) ;= I'(u(t)) fort € [to, t1) and f (t) := u(t) + Au(t) fort € (tp, t1). To simplify
notation we sef:| := ||-|lo and(-, -) := (-, -)o. The equality

')

(Au(t + s), u(t +s)) — (Au(t), u(t))
= (Au(t + s), u(t +s) — u(t)) + (A(u(t +s) — u(t)), u(t))
= (AUt +s) + u(t)), ut +s) — u(t))

reveals that — (Au(t), u(t)) is differentiable with

d
gp (AU®), u®) = 2(Au(®), u(t)
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fort e (tp, t1). It follows from Cauchy-Schwarz’s inequality that
1 4. 2 : :
EIUI y = ul“(Au, U) — (u, U)(Au, u)
= |ul?(Au, f — Au) + (u, Au— )(Au, u)
=—wFMu—fQF+OLAw—U32+%wﬂfﬁ—%w,ﬂ2

AN

1 5.0
—|ul?| f
4||||

IA

1

2 ululE oh®

and hence 1

7 (©) < Sh2)y ()

fort € (to, t1). This proves (A.32).
Now we calculate using (A.32)

d 1d
¢ ogiul = 5~ logju > =

d 2dt uZ = |up
_ (u, )
=—y +ow+ ME
> -y +o—hy
3 1
> —— — ~h?
z 2y +ow 5
3 L2 1,
> ——y(tp)e?” " —=h
> 2V(o) 2o -3
and (A.33) follows. O

B. The concrete realization

Let N € N andQ C RN be a bounded domain with>-boundary. In all spaces of distribu-
tions onQ we omit the sef) from the symbol representing the space.
Define the linear boundary value problém, ) by

Au = —Au
Bu = ysu,

wherey; is restriction tadQ. Then(A, B) is normally elliptic [2, Ex. 4.3(e), Rem. 7.3].
Forq > lletXq :=7Z+1/q and denote by-lS fors e [—2, 2]\ Xq the Bessel potential

scale induced by A, B) [2, 87]. Fora € [-1, oo) denote bYW Eq,«, Aq,«) the extrapolation-

interpolation scale generated by the realizatly := Aqo € L(HqZ’B, Lq) of (A, B) in
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Eq := Eq,0 := Lg, and the complex interpolation functot {Jo. By [2, Thm. 7.1] we then
have

(B.1) Equ=HZ%  for2a e [-2,2]\ Zq.

It is known under these conditions th&§ has bounded imaginary powers, so that the scale
(Eq,a» Aq,«) is equivalent to the fractional power scale generatedthy Aq) and possesses
the reiteration property. For results about bounded inagipowers we refer the reader
to [36,44] and [2, Rem. 7.3].

For a functionf : Q x R — R denote byf the superposition operator induced byi.e.
foru: Q — Rdefinef(u): Q » R by f(u)(x) ;= f(x, u(x)). Itis standard to prove:

B.1 Lemma. If f satisfieg(F1), then fe cl,, L¢/(p—1)) uniformly on bounded subsets of
Ly, forallr > p—1.Infact,forue L,

1D FWU2(Lr Ly gy < CA+ UP2) .

The differential Df (0) is given by(D f (O)u)(x) := fu(x, O)u(x).

In what follows we denote by the linear operator that maps a functioto the function
given byx — fy(x, O)u(x).
We consider problem (P) farg € H(},B.

B.2 Theorem. Suppose that f satisfi€s1). For every q > 2 there arex(q) € (-1, 0]
and a(q) e [0,1) such that setting Xo = Hg’(g), Xq1 = H(’;,(g”z, and Xg.o(q) =
[Xq.0- Xq.1]u(q), We have X .(q) = Hi, and f € C*(Xq.a(q)> Xq.0) uniformly on bounded
subsets. Moreover, denoting by A the corresponding re@dizeof (A, B) in Xqo0, A €
H(Xq,la Xq,O)-
For fixed g, the abstract Cauchy problem
' Au(t) = f
(B.2) u(t) + Au(t) (u(t)) t>0
U(O) = Up Up € Xq)a(q)
generates a compact continuous semiffosn a domairD C Rar X Xq,a(q) With the properties

listed in Theorenf.3. Let T, : Xq,4(q) — (O, oo] denote the maximal existence time. Then
has the following additional properties:

a) p: D — CL(Q) is continuous, and it is continuously differentiable insecond argu-
ment.

b) For fixed T € (0,00], V C T (T, oq]), ande € [0, T) define Me) as in Theo-
remA.39). If M (e1) is bounded in X ,(q) for somes; € (0, T), then M(e2) is bounded
in HfB and precompact in &§Q) for all ¢2 € (e1, T) andr > 2.

c) Ift > 0,u,0 € Drand u—v € PXqu(g ~ {0}, thenp(t, u) — o (t, v) lies in PoCH(Q).
Similarly, ift > 0, u € Dy, v € PXq.a(q ™ {0}, then Dp!(u)o lies in PoCL(Q).
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d) For every t> 0 and every ue Dy, ¢! and Dp!(u) are injective.
e) For every t> 0 and every ue Dy, Dp'(u) € L(Xq,a(q)) has dense range.

f) If f satisfiegF2), the spectra and eigenspaces of the operators Bf (0) in Xg,0 and
—A — Fin Ly coincide.

Proof. We start by exhibiting the scalg ,, .
CAsSE1l: 2<q < N(p—2)/(p—1). First observe that we have

2N 2N
< :
N—-2"N-g

(B.3) p<2=

Also, fromN > 2 we findq > 2 > N/(N — 1) and therefore, using (B.3):

N > N >1
(P—D(N—-qg) N-+q

r:=ﬂ and 0:=N(E—p_1)
q q r

(B.4)

Now set

From the assumption apand (B.3) we find

(B.5) 0>6>-1.
Choose 1ao
K(q) e [_ 2+ ,e] W2 C (—L0)~ X
so that
0+1
(B.6) K@ +1> 2220

Now we have from the definition afandé, using (B.3) and (B.4):

1>E>}>0, 1—E20—E
q q r
and
~1 1 N(p—1 N N
1-P=1. g o NP=D _y NN
r q r q q
From [2, Eq. (5.9)] it follows that
]
(B.7) HI < Ly = Lrjpop = HE@ = Hgg) .
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The last equality is a consequence of [2, Eq. (7.4)]. Far [0, 1] put Xq,, = Eq,y +x(q)/2
and set
1-x()

2

a(q) = e (1/2,1).

Then by (B.1)
x( x(Q)+2
Xq,0 = Hq,zg)a Xaa@ = Hgp  Xq1= Hq,lg‘]) ;
and by the characterization of the spaégs, given in [2, Sect. 7], together with (B.7) and
Lemma B.1,f € CY(Xq.a(q)» Xq.0) uniformly on bounded sets.
CASE2: N(p—2)/(p—1) <q. Settingr :=q(p—1) andx(q) := 0, it follows that
1 N N

1>—-—>->0, 1-—>0——.
q r r

Again from [2, Eq. (5.9)]
HI o L 5 L.
Fory € [0, 1] put Xq,, = Eq,, and setz(q) := 1/2. Then by (B.1)

1 2
Xq0="Lqg, Xga@ =Hgp Xg1=Hgzn

and f € CY(Xq.a(q)> Xq.0) uniformly on bounded sets.

In any case, by the reiteration property for the sddlg , , Aq,,) we have thatXy, =
[Xq,0, Xg,1], for y € (0, 1). Moreover,Aq «(q)/2 is the realization (in the sense of [3, p. 7])
of Aq,—1in Xq,0. Consider the abstract initial value problem

U(t) + Aqr(g2u(t) = fu)) t>0
(B.8)
U(O) = Up Up € Xq,a(q) .
By the standard theory outlined in Appendix A, (B.8) genesad compact continuous semi-
flow on Xq,4(q) With the properties listed in Theorem A.3.
For the remaining properties of the semiflow, we need to shmw¢ghregularizes. In order
to establish an appropriate bootstrapping argument, define

2qN
2< < N -2 -1
q(q) := { _2aN ~ B
2N —q N(p-2)/(p—1) <q<2N
_Zq 2N < q.
We claim that
(8.9) Jnf(@@ —a) > 0.

45



We will show this fact separately on each of the intervals= [2, N(p — 2)/(p — 1)),
l2:=[N(p—2)/(p—1),2N), andlz :=[2N, c0). Forq € 11 we have in view of (B.6)

q> 49N L (2N—p(N—q))
= 2N+ p(N —q) 2N+ p(N—-q)/

q(a) -

The last term is continuous, positive and increasing on |11 by (B.3). Hence it is bounded
away from 0. Ifq € |, then
__ @
- 2N —q
is continuous, positive and increasinggron I, hence bounded away from 0. Qg the
assertion is obvious. Thus we have proved (B.9).

Now we choosé(q) € R with

a@ —q

3+«
2p@+x@ e[ 2D 24 k@) xg
It follows that 1 @
+a
p@) e [ ] ,1) C (a(@).1) .
Moreover N 31k N N
k(g
1-@2s@+x@)+—<1- +— < —
P+ 2 T4 aw
holds forq > 2, so that finally
1 1 N N
1>—->——>0, 2(Q)+x(q)——>1— ——.
q q( 7@ D q e[Ce))
As a consequence of [2, Eq. (5.9)] and (B.1), this yields
2 K
Xaq,p@) = "'q,ﬁzs(q)Jr @ Haw.8 = Xa@.a@ -

Here for convenience we set
a(q) := a(g(q)) .
We have the following commuting diagram of natural embegslin

(B.10) Xa(q),a(q)

|

Xq,ﬁ(q) — Xq,a(q)

Moreover, from uniqueness it is clear that an orbit startihg € Xq . (q) coincides with the
orbitin Xq «(q) forq’ € [2, q].

a) Now we fix someg > 2 and letD denote the domain af in Xq 4 (- Consider an
orbit ¢ (t, ug) starting at somelp € Xq,4(q), With existence interval. From Theorem A.3e)
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and (B.10) we know that € C(J, Xq s(q) S C(J, Xqq.a(q)- Repeating this argument, by
(B.9) we see thatl € C(J, X p()) forallr > 2.

We claimthat: D — X 4 is continuous, and continuously differentiable in the seco
argument, for alt > 2. In view of Theorem A.3d) and of (B.10) it suffices to showstfor
fixedr > g under the condition that: D — Xr.«(r) has these properties. Therefore, fix
(to, Ug) € D and also fixt; € (0,tg). LetV denote an open neighborhood g@ft1, Ug) in
Xr.a(ry SUch that the restriction afe~ to V is continuously differentiable as a map into
X p(r)- This is possible by Theorem A.3f). Let denote an open neighborhood(tf, uo) in
D such thaip(U) C V and such thap is continuously differentiable in the second argument
onU. This is possible since we assume thatD — Xr,a(r) IS continuous, and continuously
differentiable in the second argument. Put

W= {(t,u) e R} x Xga | t —to+t,uyeU}.
ThenW is an open neighborhood ¢, ug) in D and

p(t,u) = p(to —t1, p(t —to + t1, u))

for all (t,u) € W. From this it is clear thap: W — X; () is continuous, and continuously
differentiable in the second argument. Siritg ug) € D was arbitrary, this proves the claim.
Choosing large enough such tha s C C1(Q) we have proved a).

b) The statement on boundedness and compactness follomsTineorem A.3g) by the
bootstrapping procedure outlined above, and by the compssif the embeddings (B.10).

¢) The comparison principle is proved in a standard way, sp¢¥3]. Note that due to our
weak regularity assumptions on the coefficients of (P) sgopecximation arguments have to
be used in order to apply the results from [18].

d) To show backward uniqueness, assume that for sgme 0 andug, vg € Dy, with
Up # vg We havep (tg, Ug) = ¢(to, vg). Letu, o denote the orbits starting i, vg. Going
forward in time a small amount we may assume that

u,v e C([0, to], C*(Q)) N C([0, to], HZ 5) N C([0, to], L2) .

We may also assume thigtis the first time such that(tp) = v (tp). Sinceu, v are bounded in
C(Q), there isM > 0 such that

g(t) := fu) - f )

satisfies
19N, < Mlu®) —o®)llL,
fort € [0, tg]. This follows from (F1). Settingo := u — v, w is a solution of

w(t) + Aw(t) =g(t) ,

whereA is the realization o A in L>. Now Lemma A.16 yields thab(tg) # 0, a contradic-
tion. The proof of injectivity ofDg!(u) is similar. This proves d).
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Property e), i.e. thaD¢!(u) has dense range in this setting, is proved in [1].der N and
under stronger assumptions érthis has also been considered in [25, Ex., p. 209], although
the proof seems to be incomplete.

f) Forq > 2 defineBq 0 := Aq,0— F. Note thatF € L(Lgq), since by (F1)fy(-,0) € L
As we have shown in Appendix A.3.Bq0 € H(Eq,1, Eq,0). From the definition of the
adjoint of a densely defined closed operator it easily fodldinat donﬁB’ 0 = dom(A’ o)
considered as operators@iEg o). Therefore, by [3, Thm. V.2.1.3Bq.0 |s closable |rEOI _1.
We denote its closure bBy 1. Moreover,By _1 € H(Eq,0, Eq,—1). We can define fou e
[—1, 0] the realizationBg,, Of Bq,—1 in Eq,. Theno(By,,) is independent of € [—1, O].
Again Bq , € H(Eqg,a+1, Eq,a)-

Recall that ifX is a Banach spacé\ € C(X), p(A) # @, D(A) is dom(A) equipped with
the graph norm, then every dense subseDOA) is a core forA (see [29, I11.6.1, Problem
6.3]). Since the scal€Eg, )., is densely embeddety 1 = H2 OB is a core forAg,, andBg .

We have defineKq o0 = Eqc(q)/20 Xq,1 = Eq,14x(q)/2, and Xq,a(q) = Eq,1/2, SO that

f e C1(Xq.a(q)> Xq.0)- As before,

By = Aq.c@y2 — D f(0) € H(Eq.14x(a)2- Eque(@)/2) »

and By coincides withBg,o on Eq ;1 by Lemma B.1. By the same reasoning as abdg;
is a core forBy. HenceBy = Byg,(q),2- It is easy to see that the eigenspacesgf, are
independent o& € [—1, 0]. This follows from the properties of Banach scales.

To prove that the spectral properties are independeqto®, recall that we have embed-
dingsEq 1 < Ez 1. Thus all eigenvectors dBq o are also eigenvectors @ o. In view of
the bootstrapping procedure outlined above, and of thepgence oé:, every eigenvector
of By g is also an eigenvector @& o for g > 2. Together these observations prove f). [J

One can extract some more information from the comparisotipte regarding the in-
variance of certain cones under the semiflow. Recall the itlefinof S* andSreg given in
Section 2.2.

B.3Lemma. Let f satisf(F1). Then for ue S* the set u— PH 13 IS positive invariant with
respect tap, and for ue S~ the set - PH 28 IS positive invariant.

Proof. If u € Siggandv € Cg(ﬁ) satisfiesv > u, the map(t, X) — u(x) is a subsolution
for the parabolic problem (P). From the comparison prirecipé obtain thap (t, v) > u for
allt € J(v). For the general case, we considee S—, and suppose that e Hzl,B satisfies

v > U. Choose sequencésn) C Siggand(wn) C Cg(ﬁ) with w, > 0 such that, — u and

wn — v—Uuin H216. Setop := Up + wp SO thatvy > up, for all n. The continuity ofp and
the invariance in the regular case proved above then yields

p(t,v) —u= nleoo((P(ta vn) —Un) >0

forallt € J(v). The proof for supersolutions proceeds analogously. O
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Let f satisfy (F1) and (F2), and consider the semiflogiven by Theorem B.2. Suppose
thatuog, uy, uy are orbits ofp existing for allt > 0 such that;(t) — 0in X342 = H21,B as
t — o0o,i = 0,1, 2. Due to Theorem A.3e) and Theorem B.2a)t) — 0 in C1(Q) and in
Xq,y forallg > 2andy € [0, 1). Set

(i) v(t) := Dp'(Uo(0))vg for someng € Xz 4(2) OF
(i) o) :=ug(t) — uz(t).

Moreover, suppose tha{0) # 0. By Theorem B.2d)y(t) # O fort > 0.
In our setting the linearizatior A — F has compact resolvent so that by Corollary A.11b)

iMoo || Uj (t)||§(/2t (2) and Iim_>oo||v(t)||§</qt’y exist for allqg > 2 andy € [0,1). Moreover,

lIM¢_ oo || Uj (t)||1/t , < lfori =1,2, 3.

B.4Lemma. Seta:= Iimt_>oo||u(t)||§(/2ta(2) € IR%(J{.

a) If o(t) is as above, then for everyy 2 and everyy € [0, 1)

1/t

I|m ||v(t)|| Ilm ||v(t)||

Cl(Q)

b) Suppose thatin additioffr4) holds. IfllmHoo||uo(t)||><2 o < lin cas€(i), respectively

1/t
lime_, oo l|U; (D[],

% < 1fori =1ori = 2in case(ii), then a> 0.
2,0(2)

Proof. a) From Corollary A.11b) we know that

lim =
lm o®)lx,, =2

for y € [0, 1). In view of (B.10) there are constar®g, C, > 1 such that

”'”XZ,a(Z) < Cl“'“Xq(z),(}(z) and ”'”Xq(z),(;(z) < CZ”'”XZ,/;Q) .
Thus 1/t 1/t 1/t
101Xy = C1 - MO, = @
1/t 1/t 1/t
101Xy < 5 0O, ,, — @
ast — oo. Hence Y
. t
lim =
t—>oo”D(t)”Xq<2),a<2)
Again Corollary A.11b) yields
: 1/t
lim =
Hoo”D(t)”Xq@),y

forall y € [0, 1). Repeating this argument we obtain

1/t

Jim Jlo®)ly,, =2
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forallg > 2andy € [0, 1).
Observe that
()
Xa.6@) — Xa.a(@)
commutes ifg is large enough. By the same argument as above we obtain

i e _
Jim ol =a-

b) Note that applying a) tq; (t) — O we obtain
: e/t e 1/t
Nm Ol dig = lim O, -

In particular, if lim_ o || Ui (t)||§(/2ta(2) <1(1=0,1,2),then

(B.11) lu; (t)||c@ decays exponentially fast as» oo.

First we prove the claim in the case (i). Recall thalves the equation

(B.12) o(t) + (=A = fu(, 0)o(t) = (fu(-, Uo(®) () — ful-, 0)o ()

fort > 0. Going forward in time a small amount we may assume tha)ghalds fort > 0.
By (F4) and (B.11) alst(t) := || fu(-, up(t)(-)) — fu(:, 0)||L decays exponentially fast as
t — o0, so thath € L»((0, c0)) and

10(t) + (=A = Fo®llL, < h®llo®lL,

fort > 0. Hencea > 0 by Lemma A.16.
To prove b) in case (ii) suppose first that {ig. [|u1 (1) |
tions

1/t

Xou@ = L Then by our assump-

||u2(t)||X2,a(2)
U2 X2,02)
ast — oo, and the claim follows easily. The same proof applies to tlasec

i 1/t
|Imtaoo”u2(t)||x/2,a(2) =1

Now suppose that Iimm||u1(t)||§/;a(2) < landlim_ sluz(t)]

-0

1/t

% < 1. Set
2,a(2)

1
g(t, x) = /0 fu(x, SO () + (1 — HU2()(X)) dS— fy(x, 0) .

Theno satisfies the equation

(B.13) o) + (=A = fu(-, 0)o(t) = g(t, o (t)
fort > 0, and again we may assume that (B.13) is even satisfietd f00. As above, from
(F4), (B.11) and Lemma A.16 it follows that> O. 4
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