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We are concerned with the existence of infinitely many solutions for the
problem −∆u = |u|p−2u+ f in Ω, u = u0 on ∂Ω, where Ω is a bounded domain
in RN , N ≥ 3. This can be seen as a perturbation of the problem with f = 0
and u0 = 0, which is odd in u. If Ω is invariant with respect to a closed strict
subgroup of O(N), then we prove infinite existence for all functions f and u0
in certain spaces of invariant functions for a larger range of exponents p than
known before. In order to achieve this, we prove Lieb-Cwikel-Rosenbljum-type
bounds for invariant potentials on Ω, employing improved Sobolev embeddings
for spaces of invariant functions.
MSC (2010): 35J61, 35J20

1. Introduction
The question of existence of infinitely many solutions for the boundary value problem

(1.1)
{
−∆u = |u|p−2u+ f, in Ω,

u = u0, on ∂Ω,

is a classical area of research in the theory of semilinear elliptic equations. We suppose
that the domain Ω ⊆ RN is bounded and of class C2,β for some β ∈ (0, 1], N ≥ 3, p > 2,
f ∈ L2(Ω), and u0 ∈ C0(∂Ω). Equation (1.1) can be seen as a perturbation of the problem
with f = 0 and u0 = 0, for which the existence of infinitely many solutions is well known
for p < 2∗ due to the oddness of the nonlinearity. Here we denote by 2∗ := 2N/(N − 2)
the critical Sobolev exponent.

∗This research was partially supported by CONACYT grant 237661 and UNAM-DGAPA-PAPIIT grant
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If u0 = 0 (the homogeneous boundary condition), Bahri and Lions [3] and Tanaka [40]
proved infinite existence for 2 < p < 2̃BL

N , where

2̃BL
N := 2 + 2

N − 2 .

In the former article, Weyl asymptotics for the Dirichlet Laplacian on Ω are employed, and
in the latter Lieb-Cwikel-Rosenbljum-type (LCR-type) bounds on the number of nonposi-
tive eigenvalues of the linearization of (1.1) at a critical point of the unperturbed problem.
This result presents, up to now, the largest general upper bound for allowed exponents
p for infinite existence, and was preceded by the works of various authors, see [2, 32, 38]
and the related result in [1]. Continued interest in this question manifests itself in the
articles [8, 23,27–29,31,36,41,42].
Under the non-homogeneous boundary condition, where u0 6= 0 is allowed, Bolle, Ghous-

soub and Tehrani [11] established infinite existence for 2 < p < 2̂BGT
N , where

2̂BGT
N := 2 + 2

N − 1 ,

see also Candela and Salvatore [14] for a previous weaker result.
On the other hand, if Ω is a ball and f is radially symmetric, infinite existence was

shown by Struwe [39] for the homogeneous boundary condition, p ∈ (2, 2∗), and f ∈ Lµ(Ω)
for some µ > N/2, see also [15]. In fact, in this result the oddness of the nonlinearity is
not needed. In a similar vein, Kazdan and Warner [24] treated annular domains. The non-
homogeneous boundary condition was treated in the radial case by Candela, Palmieri and
Salvatore [13], who showed infinite existence for p ∈ (2, 2∗) if N ≥ 4, and on unbounded
domains by Barile and Salvatore [5, 7].
As the results above for radially symmetric equations suggest, symmetry may improve

the allowed range for p for infinite existence in (1.1). Our goal here is to analyze to what
extent partial symmetries have this effect. To this end, suppose that G is a closed subgroup
of O(N) and that Ω is G-invariant. Recall that a subset X of RN is G-invariant if gx ∈ X
for all x ∈ X and g ∈ G, and a function h : X → R is G-invariant if h(gx) = h(x) for all
x ∈ X and g ∈ G. We will also use the term symmetric for G-invariant subsets of RN and
for G-invariant functions defined on them.
In general, an extension of the exponent range is expected in the presence of symmetries.

This is due to the greater sparsity and hence faster growth of symmetric eigenvalues (either
of the Dirichlet Laplacian, or of the linearization of (1.1) at a solution), which in turn
improves the lower bounds for symmetric critical values of the unperturbed problem. In
what follows, by infinite symmetric existence we will refer to the statement that an infinite
number of symmetric solutions of (1.1) exists for all f, u0 in certain spaces of symmetric
functions.
The first result in this direction was given by Clapp and Hernández-Martínez [17]. Defin-

ing
M := max{dimGx | x ∈ Ω}
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they introduced exponents 2̃CH
N,M and 2̂CH

N,M and showed that infinite symmetric existence
holds for the homogeneous boundary condition if p ∈ (2, 2̃CH

N,M), and for the inhomoge-
neous boundary condition if p ∈ (2, 2̂CH

N,M). These results rest on Weyl asymptotics for G-
symmetric eigenvalues of the Dirichlet Laplacian in Ω obtained by Brüning and Heintze [12]
and Donnelly [20]. The only other result we are aware of that also treats partially sym-
metric settings (although on an unbounded domain) is by Barile and Salvatore [6].
In contrast with [17], we use the variational approach to infinite existence developed

by Tanaka [40] and combine it with Bolle’s method [10, 11] and new symmetric LCR-
type bounds. Our proof of these bounds combines techniques from Li and Yau [26] and
Blanchard, Stubbe and Rezende [9] with improved embeddings of H1

0,G(Ω), the subspace
of H1

0 (Ω) of G-symmetric functions. For the case of group actions on Ω where every orbit
is infinite, these were given by Hebey and Vaugon [22], and for certain cylindrical domains
(with fixed points for the action of G) we use a result by Wang [43].
In each of the four cases we consider, we provide a bound A such that infinite symmetric

existence holds if p ∈ (2, A). Defining

m := min{dimGx | x ∈ Ω},

if 0 < m ≤ N − 2 we denote by ÃN,m the bound A under a homogeneous boundary
condition, and by ÂN,m the bound A under a non-homogeneous boundary condition. Note
that in the latter case we impose stronger regularity conditions on u0 and f than in
some results mentioned before. In the case where m = 0 we only consider cylindrical
domains of the form Ω := Ω1 × B`

r, where Ω1 ⊆ Rk is a smooth bounded domain, k ≥ 1,
r > 0, B`

r denotes the open ball of radius r in R`, centered at 0, and ` ≥ 2. In this
case we take G to be the orthogonal group O(`) acting on the second factor of Ω. Under
a homogeneous boundary condition the bound A is denoted by B̃k,`, and under a non-
homogeneous boundary condition the bound A is denoted by B̂k,`.
Comparing known bounds on p with our results in the case m > 0 we find the following:

we always have ÃN,m > 2̃BL
N , and we have ÃN,m > 2̃CH

N,M if and only if

M −m <
N

2

(
1 + 1

N −m− 1

)
.

Moreover, ÃN,m is always larger than the corresponding limiting exponent in [6]. We always
have ÂN,m > 2̂BGTN , and we have ÂN,m > 2̂CH

N,M if and only if

M −m <
N

2 .

The algebraic verification of these comparisons is straightforward, although tedious in some
cases. Note that ÃN,m > 2∗ if and only if m > (N − 2)/2, and ÂN,m > 2∗ if and only if
m > N/2, i.e., in some cases we are allowing supercritical exponents p.
For the comparison of bounds for p in the case m = 0 with the cylindrical domains

introduced above, we note that N = k + ` and M = ` − 1. Then B̃k,` > max{2̃BLN , 2̃CH
N,M}
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and B̂k,` > max{2̂BGTN , 2̂CH
N,M}, and these limiting exponents are subcritical. We proved the

comparison algebraically in all cases, except when k ≥ 2 and ` ≥ 4. In this case, numerical
evidence strongly suggests the claim.
In our results we easily could have considered more general odd nonlinearities instead

of the homogeneous function u 7→ |u|p−2u, as was done, e.g., in [40]. We refrained from
doing so in order to keep the formulas for our limiting exponents as simple as possible,
facilitating the comparison with those from other papers.
Our text is structured as follows: In Section 2 we recall the embedding theorems for

Sobolev Spaces of symmetric functions. Section 3 is devoted to the proofs of LCR-type
bounds on Ω for symmetric eigenvalues. In Sections 4, 5, 6, and 7 we state and prove the
Bahri-Lions-type results on infinite symmetric existence for the perturbed problem (1.1).
Appendix A provides the justification for some calculations made in Section 3.

2. Embeddings of Sobolev Spaces with Symmetries
For any r ≥ 1 let LrG(Ω) and H1

0,G(Ω) denote the closure of the space of all G-symmetric
functions ϕ ∈ C∞c (Ω) with respect to the Lr- and H1-norms, respectively. Here we provide
theorems on compact embeddings of H1

0,G(Ω) in LrG(Ω), where r > 2∗ if m > 0, and in
weighted Lebesgue spaces if m = 0.
We introduce the higher critical Sobolev exponents for the exponent 2 as follows:

2∗N,k :=


2(N − k)
N − k − 2 N − k ≥ 3

∞ N − k = 1, 2

Note that 2∗N,k = 2∗N−k, the usual critical Sobolev exponent in dimension N − k.
The following embedding result improves the usual critical Sobolev exponents, assuming

the presence of symmetries.

Theorem 2.1 (Hebey and Vaugon [22]). Suppose that m ≥ 1.

(a) If m ≥ N − 2 and p ≥ 1, then H1
0,G(Ω) embeds continuously and compactly in Lp(Ω).

(b) If m < N − 2 and p ∈ [1, 2∗N,m], then H1
0,G(Ω) embeds continuously in Lp(Ω). This

embedding is compact if p < 2∗N,m.

The former theorem disallows symmetry groups with m = 0. In some special cases,
embeddings of Sobolev spaces of symmetric functions into certain weighted Lebesgue spaces
with exponents higher than the critical exponent are known even if m = 0. To present
these, suppose that k, ` ∈ N satisfy ` ≥ 2. Let Ω1 ⊆ Rk be a smooth bounded domain and
set Ω := Ω1 × B`

r, where r > 0 and B`
r denotes the open ball of radius r in R`, centered

at 0. We write x = (x′, x′′) for elements of Rk × R`, where x′ ∈ Rk and x′′ ∈ R`. Set
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N := k + ` and put G := I × O(`). Fix ν ≥ 0 and denote by Lp(Ω, |x′′|ν dx) the weighted
Lp-space on Ω with norm

‖u‖Lp(Ω,|x′′|ν dx) :=
(∫

Ω
|u(x)|p|x′′|ν dx

)1/p

.

Moreover, set

τk,` :=



2
N − 2 min

{
2(`− 2)

k
, ν

}
, k ≥ 2, ` ≥ 3,

2
k

min
{1
k
, ν
}
, k ≥ 2, ` = 2,

min
{

2, 2ν
`− 1

}
, k = 1, ` ≥ 2.

Theorem 2.2 (Wang [43]). If p ∈ (1, 2∗N + τk,`), then H1
0,G(Ω) embeds compactly in

Lp(Ω, |x′′|ν dx).

3. Spectral Density Estimates
For Schrödinger operators −∆ + V in RN the classical spectral estimates of Lieb, Cwikel
and Rosenbljum [18, 30, 34] state bounds on the number of nonpositive eigenvalues. If V
is radially symmetric, analogous bounds were proved earlier by Bargmann [4]. See [26]
and [37] for modern treatments of these classic results.
To state similar bounds for symmetric eigenvalues if V ∈ LN/2G (Ω), let NG(V ) denote the

dimension of the generalized eigenspace corresponding to all nonpositive eigenvalues of the
operator −∆ + V in L2

G(Ω) with Dirichlet boundary conditions.
For a real valued function f on some set X we use the notation f± := max{±f, 0}, so

f = f+ − f− and f± ≥ 0.

Theorem 3.1. (a) If N −m ≥ 3, then there is a constant C = C(N,G,Ω,m) such that

(3.1) NG(V ) ≤ C
∫

Ω
V

N−m
2

− for all V ∈ LN/2G (Ω).

(b) If N −m = 2 and ε > 0, then there is a constant C = C(ε,N,G,Ω) such that

(3.2) NG(V ) ≤ C
∫

Ω
V 1+ε
− for all V ∈ LN/2G (Ω).

Proof. Our proof is an adaptation of the proof of [26, Theorem 2], in conjunction with
Theorem 2.1.
Suppose that q is a positive and G-symmetric function of class C0,β on Ω. This regularity

requirement is easily fulfilled below when we take q to be an approximation of V−. It allows
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to prove regularity properties of the function H, which is to be introduced shortly (see also
Appendix A). Denote by µn the n-th G-symmetric eigenvalue of the problem

(3.3)
{
−∆ψ = µqψ in Ω

ψ = 0 on ∂Ω.

Given r ∈ (2, 2∗N,m] in case (a) and r > 2 in case (b) we claim that there exists a positive
constant C = C(N,G,Ω, r) such that

(3.4) µ
r
r−2
n

∫
Ω
q

r
r−2 ≥ Cn for all n ∈ N.

To prove the claim, we follow the steps of the proof of [26, Theorem 2], working only in
spaces of G-symmetric functions. In particular, we consider the function

(3.5) H(x, y, t) :=
∞∑
n=1

e−µntψn(x)ψn(y), x, y ∈ Ω, t > 0,

where ψn is the G-symmetric eigenfunction of (3.3) corresponding to µn. It follows that H
is G-symmetric in its first two arguments. The function H is the G-symmetric heat kernel
of ∆/q in a q-weighted space of L2-functions on Ω, see Appendix A for the definitions and
properties of H that justify the following calculations.
By Theorem 2.1 and Poincare’s inequality

(3.6)
(∫

Ω
Hr(x, y, t) dy

) 1
r

≤ C
(∫

Ω
|∇yH(x, y, t)|2 dy

) 1
2

for all x ∈ Ω, t > 0.

On the other hand, the argument leading up to (17) in [26] implies

(3.7)
∫

Ω
q(x)

(∫
Ω
H(x, y, t)q(y)

r−1
r−2 dy

)2

dx ≤
∫

Ω
q(x)

r
r−2 dx

for all t ≥ 0.
For the function

(3.8) h(t) :=
∞∑
n=1

e−2µnt =
∫

Ω

∫
Ω
H2(x, y, t)q(x)q(y) dx dy

it holds that

(3.9) h′(t) = −2
∫

Ω
q(x)

∫
Ω
|∇yH(x, y, t)|2 dy dx,
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see (14) in [26]. Applying Hölder’s inequality twice we obtain from (3.6), (3.7) and (3.9)

h(t) ≤
∫

Ω
q(x)

(∫
Ω
H(x, y, t)r dy

) 1
r−1
(∫

Ω
H(x, y, t)q(y)

r−1
r−2 dy

) r−2
r−1

dx

≤
(∫

Ω
q(x)

(∫
Ω
H(x, y, t)r dy

) 2
r

dx
) r

2(r−1)
(∫

Ω
q(x)

(∫
Ω
H(x, y, t)q(y)

r−1
r−2 dy

)2

dx
) r−2

2(r−1)

≤ C

(∫
Ω
q(x)

∫
Ω
|∇yH(x, y, t)|2 dy dx

) r
2(r−1)

(∫
Ω
q(x)

r
r−2 dx

) r−2
2(r−1)

= C(−h′(t))
r

2(r−1) I
r−2

2(r−1) ,

where we have set
I :=

∫
Ω
q(x)

r
r−2 dx.

The last inequality yields
h′(t)h(t)−

2(r−1)
r ≤ −CI−

r−2
r ,

which in turn yields (3.4) after integrating from 0 to 1/µn and using h(0) =∞.
One now follows the steps (i), (ii), (iv), and (v) of the proof of [26, Cor. 2], applied to

(3.4), to obtain
NG(V ) ≤ C

∫
Ω
V

r
r−2
− for all V ∈ LN/2G (Ω).

In this process we approximate V− in LN/2(Ω) by positive functions q ∈ C0,β
G (Ω). To prove

(a) we set r = 2∗N,m. For (b), given ε > 0 it is sufficient to take r large enough such that
r/(r − 2) < 1 + ε.

Consider now a domain Ω as in Theorem 2.2 and define the intervals

Ik,` :=



[
1 + k

2 ,
N

2

]
k ≥ 2, ` ≥ 3,[

1 + k2

2k + 1 ,
N

2

]
k ≥ 2, ` = 2,[

1 + `− 1
`+ 1 ,

N

2

]
k = 1, ` ≥ 2.

Theorem 3.2. Suppose that γ ∈ int Ik,`. Then there is a constant C = C(G,Ω, k, `, γ)
such that the following holds true: if V ∈ LN

2 (Ω) is G-symmetric, then

NG(V ) ≤ C
∫

Ω
V γ
−(x)|x′′|2γ−N dx.
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Proof. As in the proof of Theorem 3.1, we consider a positive and G-symmetric function q
of class C1 on Ω. Define the eigenvalues µn of the problem (3.3) as before. We claim that
there exists a positive constant C = C(G,Ω, k, `, γ) such that

(3.10) µγn

∫
Ω
qγ(x)|x′′|2γ−N dx ≥ Cn for all n ∈ N.

To prove the claim we modify the proof of Theorem 3.1 using an idea from [9]. We define
H as in (3.5) and consider h(t) as in (3.8). Set

p := 2γ
γ − 1 = 2 + 2

γ − 1 , b := 1− N

2γ , ν := −bp,

and define τk,` accordingly, as in Theorem 2.2. Note that the case γ = N/2 and b = 0
corresponds to the proof of Theorem 3.1.
It follows from the choice of γ that p ∈ (1, 2∗N + τk,`). Now Theorem 2.2, Poincaré’s

inequality, and Eq. (14) of [26] yield a positive constant C = C(G,Ω, k, `, γ) such that

(3.11)
∫

Ω
q(x)

(∫
Ω
|y′′|−bp|H(x, y, t)|p dy

) 2
p

dx

≤ C
∫

Ω
q(x)

∫
Ω
|∇yH(x, y, t)|2 dy = −C2 h

′(t).

We apply the reasoning employed in [26] to prove their Eq. (17):

(3.12)
∫

Ω
q(x)

(∫
Ω
H(x, y, t)|y′′|bγq(y)

p−1
p−2 dy

)2
dx

≤
∫

Ω
q(x)

(∫
Ω
H(x, y, 0)|y′′|bγq(y)

p−1
p−2 dy

)2
dx

=
∫

Ω
qγ(x)|x′′|2bγ dx

=: I.
By the choice of b and γ this last integral is always finite. We calculate with Hölder’s

inequality, using the triplets of exponents (p, γ, p) and (2, 2γ, p):

h(t) =
∫

Ω
q(x)

∫
Ω
H2(x, y, t)q(y) dy dx

=
∫

Ω
q(x)

∫
Ω
|y′′|−bH

(
Hq

p−1
p−2 |y′′|bγ

) 1
γ

(H2q)
1
p dy dx

≤
∫

Ω
q(x)

(∫
Ω
|y′′|−bpHp dy

) 1
p
(∫

Ω
Hq

p−1
p−2 |y′′|bγ dy

) 1
γ
(∫

Ω
H2q dy

) 1
p

dx

≤
(∫

Ω
q(x)

(∫
Ω
|y′′|−bpHp dy

) 2
p

dx
) 1

2
(∫

Ω
q(x)

(∫
Ω
Hq

p−1
p−2 |y′′|bγ dy

)2
dx
) 1

2γ

×
(∫

Ω
q(x)

∫
Ω
H2q(y) dy dx

) 1
p

.
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Therefore, (3.11) and (3.12) imply, with varying positive constants C = C(G,Ω, k, `, γ),
that

h2(t) ≤ −Ch′(t)I
1
γ h(t)

2
p

and hence
h−1− 1

γ (t)h′(t) ≤ −CI−
1
γ

for t > 0. After an integration from 0 to 1/µn this yields

µγnI ≥ C
∞∑
i=1

e−2µi/µn ≥ C
n∑
i=1

e−2 = Cn

and hence (3.10). From here the proof proceeds as for Theorem 3.1, continuing from
(3.4).

Remark 3.3. Theorem 3.2 does not yield an LCR bound for Schrödinger operators on
RN as in (iii) of the proof of [26, Cor. 2] because the embedding constant here depends on
Ω.

4. Bahri-Lions-Type Results
With the notation from the introduction consider the problem

(PG)


−∆u = |u|p−2u+ f, in Ω,

u = u0, on ∂Ω,
u(gx) = u(x) ∀g ∈ G, x ∈ Ω.

We suppose that p ∈ (2, 2∗N,m), u0 ∈ C2
G(∂Ω) and f ∈ L2

G(Ω).
By u0 ∈ C2

G(Ω) we also denote the unique harmonic extension of u0 to Ω. Setting
u = v + u0, problem (PG) is equivalent to

(P ′G)


−∆v = |v + u0|p−2(v + u0) + f, in Ω,

v = 0, on ∂Ω,
v(gx) = v(x) ∀g ∈ G, x ∈ Ω.

We denote by

(4.1) ‖v‖ :=
(∫

Ω
|∇v|2

)1/2

the norm on H1
0 (Ω), and, using Theorem 2.1 if m > 0, we define the class-C2 energy

functional J : H1
0,G(Ω)→ R by

J(u) = 1
2‖u‖

2 − 1
p

∫
Ω
|u+ u0|p −

∫
Ω
fu.
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Note that if p > 2∗, J cannot be defined naturally onH1
0 (Ω), and the principle of symmetric

criticality cannot be invoked. Nevertheless, we show in section 7 that in the cases considered
here, a critical point of J indeed yields a weak solution of (PG).
For the first existence result we define the exponent

ÃN,m := 2 + 2
N −m− 2 ,

where we use the convention 1/0 :=∞. We then obtain

Theorem 4.1. If u0 = 0, 0 < m ≤ N − 2, p ∈ (2, ÃN,m), and f ∈ L2
G(Ω), then there is

an unbounded sequence (un) ⊆ H1
0 (Ω) of G-invariant weak solutions to problem (PG) such

that J(un)→∞ as n→∞.

For the second existence result we define

ÂN,m := 2 + 2
N −m− 1

and obtain

Theorem 4.2. If 0 < m ≤ N−2, p ∈ (2, ÂN,m), and f ∈ C0,α
G (Ω) for some α ∈ (0, 1], then

there is an unbounded sequence (un) ⊆ H1
0 (Ω) of G-invariant weak solutions to problem

(PG) such that J(un)→∞ as n→∞.

Remarks 4.3. (a) As mentioned in the introduction, for some values ofN andm it holds
that ÃN,m > 2∗ or ÂN,m > 2∗. Nevertheless, we always have ÃN,m, ÂN,m < 2∗N,m.

(b) The Hölder condition on f and the C2-regularity of u0 in Theorem 4.2 are needed to
verify condition (H3) in [11, Lemma 4.3], see the proof of our Lemma 6.2.

If Ω has the cylindrical symmetry described just before Theorem 2.2, then we can also
allow m = 0 for the symmetry group G. To state the result we introduce a new limiting
exponent. Define functions h̃k,` on Ik,` by

h̃k,`(γ) := min
{

2 + 1
γ − 1 ,

2γ`
γ(`− 2) + k

}
,

and exponents
B̃k,` := max

γ∈Ik,`
h̃k,`(γ).

Note that we always have
B̃k,` < 2∗

since the map
γ 7→ 2γ`

γ(`− 2) + k
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is strictly increasing and takes the value 2∗ in γ = N/2, and since the strictly decreasing
map

γ 7→ 2 + 1
γ − 1

takes the value 2̃BLN < 2∗ in γ = N/2.

Theorem 4.4. If u0 = 0, p ∈ (2, B̃k,`), and f ∈ L2
G(Ω), then there is an unbounded

sequence (un) ⊆ H1
0 (Ω) of G-invariant weak solutions to problem (PG) such that J(un)→

∞ as n→∞.

Analogously, for the problem with nonhomogeneous boundary value we define functions
ĥk,` on Ik,` by

ĥk,`(γ) := min
{

2 + 2
2γ − 1 , h̃k,l(γ)

}
and the exponents

B̂k,` := max
γ∈Ik,`

ĥk,`(γ) ≤ B̃k,`.

Theorem 4.5. If p ∈ (2, B̂k,`) and f ∈ C0,α
G (Ω) for some α ∈ (0, 1], then there is an

unbounded sequence (un) ⊆ H1
0 (Ω) of G-invariant weak solutions to problem (PG) such

that J(un)→∞ as n→∞.

5. Lower Bounds for Critical Values of the Unperturbed
Functional

In this section we only assume that p ∈ (2, 2∗N,m). Set X := H1
0,G(Ω) and consider the

C2-functional E0 : X → R given by

E0(u) := 1
2‖u‖

2 − 1
p

∫
Ω
|u|p.

Choose an increasing sequence of subspaces (Xn) of X such that dimXn = n for each
n ∈ N and

X =
∞⋃
n=1

Xn.

Put

Γ := {ϕ ∈ C(X,X) | ϕ is odd and there is R > 0 such that ϕ|X\BR(0) = idX\BR(0)}

and define

(5.1) cn := inf
ϕ∈Γ

sup
u∈Xn

E0(ϕ(u)).
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The compact embedding X ↪→ Lp(Ω) given in Theorem 2.1 implies by standard arguments
that each cn is a positive critical value of E0 and that (cn) is increasing and converges to
∞.
Proposition 5.1. If 0 < m ≤ N − 3, then

(5.2) inf
n∈N

cn
ns

> 0,

where s := 2
N−m ·

p
p−2 . If m = N − 2 and ε ∈ (0, 2

p−2), then (5.2) holds with s := 1
1+ε ·

p
p−2 .

Proof. Our proof follows the ideas of the proofs of Theorem 1 and Lemma 2.2 in [40].
By [40, Theorem B] there exist critical points vn ∈ X of E0 such that

(5.3) E0(vn) ≤ cn

and such that its large Morse index is greater than or equal to n, i.e., such that

−4− (p− 1)|vn|p−2

has at least n non-positive eigenvalues. Note that the hypotheses for the cited theorem are
satisfied by standard arguments.
Let us first suppose that m ≤ N − 3. Since p < 2∗N,m we have

1 < 2p
(p− 2)(N −m) .

From Theorem 3.1, applied to V := −(p−1)|vn|p−2, and from Hölder’s inequality we obtain
varying positive constants C > 0, that do not depend on n, such that

(5.4) n ≤ C
∫

Ω
(|vn|p−2)(N−m)/2 ≤ C|vn|

(p−2)(N−m)
2

p .

Here we denote the norm in Lp(Ω) by |·|p. On the other hand, since vn is a critical point
of E0,

‖vn‖2 = |vn|pp.
Hence (5.3) and (5.4) imply that

cn ≥ E0(vn) = 1
2‖vn‖

2 − 1
p
|vn|pp =

(
1
2 −

1
p

)
|vn|pp ≥ Cns

with s = 2
N−m ·

p
p−2 .

Ifm = N−2, then by the condition on ε it holds true that (p−2)(1+ε) < p. Theorem 3.1
yields, together with Hölder’s inequality,

n ≤ C
∫

Ω

(
|vn|p−2

)1+ε
≤ C|vn|(p−2)(1+ε)

p

and hence, as before, that

cn ≥ Cns for n large enough,

with s := 1
1+ε ·

p
p−2 .

12



For the next result recall the setting of Theorem 2.2.

Proposition 5.2. If γ ∈ int Ik,` and p < h̃k,`(γ), then (5.2) holds true with s := p
γ(p−2) .

Proof. From p < 2 + 1/(γ − 1) it follows that

(5.5) p

γ(p− 2) > 1 and p

p− γ(p− 2) > 1.

In particular, p − γ(p − 2) > 0. As in the proof of Proposition 5.1 we find critical points
vn ∈ X of E0 such that E0(vn) ≤ cn and such that its large Morse index is greater than or
equal to n. By Theorem 3.2 and Hölder’s inequality, using the expressions from (5.5) as
conjugate exponents, we obtain

(5.6) n ≤ C
∫

Ω
|vn|γ(p−2)|x′′|2bγ dx ≤ C|vn|γ(p−2)

p

(∫
Ω
|x′′|

2bγp
p−γ(p−2)

) p−γ(p−2)
p

,

where we have set b := 1−N/(2γ). The choice of p implies that

2bγp
p− γ(p− 2) > −`

and therefore the rightmost integral in (5.6) is finite.
As in the proof of Proposition 5.1 we now induce from (5.6) that

cn ≥ E0(vn) =
(

1
2 −

1
p

)
|vn|pp ≥ Cn

p
γ(p−2) .

6. Bolle’s Method and Upper Bounds for Critical Values
In this section we assume the hypotheses from the beginning of Section 4, and we continue
using the notation from Section 5. We will apply Bolle’s method using a Theorem of
Bolle, Ghoussoub and Tehrani, [11, Theorem 2.2]. To this end we need to introduce
further notation. Consistently with the definition of the functional E0 we define a family
of functionals Et := E(·, t) on X, where E := X × [0, 1]→ R is defined by

E(u, t) := 1
2‖u‖

2 − 1
p

∫
Ω
|u+ tu0|p − t

∫
Ω
fu.

Hence J = E1.
In the following two lemmas we present the results from [11] in a form that is convenient

for our purposes. To this end, recall the definition of the critical values cn given in (5.1).

13



Lemma 6.1. If u0 = 0 and if the set of critical levels of J is bounded, then

(6.1) sup
n∈N

cn
np/(p−1) <∞.

Proof. It is proved in [11, Section 4] that E satisfies the hypotheses (H1), (H2) and (H4’)
of Theorem 2.2, loc. cit. Since u0 = 0, it is easy to see that (H3) from [11] holds true for
E with f2(t, s) = a0(s2 + 1)1/2p = −f1(t, s) for some a0 > 0, c.f. [16]. Defining continuous
functions ψi : [0, 1]× R→ R by

∂

∂t
ψi(t, s) = fi(t, ψi(t, s)), t ∈ (0, 1], s ∈ R,

ψi(0, s) = s, s ∈ R,

and using f2 ≥ 0 we obtain ψ2(1, s) ≥ s for all s ∈ R. Since the set of critical values of
J = E1 is bounded from above, [11, Theorem 2.2] implies that

(6.2)
(

cn+1 − cn
a0(c2

n+1 + 1)1/2p + a0(c2
n + 1)1/2p + 1

)
n

remains bounded as n→∞. The classical argument from [2, Lemma 5.3] or [33, Proposi-
tion 10.46] does not apply directly in this setting to show (6.1). Therefore we present the
details needed in this case. Put

dn := cn
4a0(c2

n + 1)1/2p .

In what follows denote by C various positive constants that are independent of n. We
obtain from (6.2) that

dn+1 − dn ≤
cn+1 − cn

2a0
(
(c2
n+1 + 1)1/2p + (c2

n + 1)1/2p
)

≤ cn+1 − cn
a0
(
(c2
n+1 + 1)1/2p + (c2

n + 1)1/2p
)

+ 1
≤ C

for all n. This implies that dn ≤ Cn and yields in turn that

cn ≤ Cnp/(p−1)

for all n.

Lemma 6.2. If the set of critical levels of J is bounded, then

(6.3) sup
n∈N

cn
n2 <∞.
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Proof. It was proved in [11, Lemma 4.3] that E satisfies (H3), loc. cit., with f2(t, s) =
a0(s2 + 1)1/4 = −f1(t, s). Since the set of critical values of J = E1 is bounded we obtain,
replacing p by 2 in the proof of Lemma 6.1, a positive constant C that is independent of
n such that

cn ≤ Cn2

for all n.

7. Comparing Upper and Lower Bounds
In this section we prove the theorems from Section 4, using the notation from Sections
4–6. In addition, we denote by 〈·, ·〉 the scalar product in H1

0 (Ω) compatible with the norm
defined in (4.1).
It is straightforward to check that under the hypotheses of any of the Theorems 4.1, 4.2,

4.4, and 4.5
2∗N,m
p− 1 ≥

2∗
2∗ − 1

holds true. Consequently, if u ∈ X is a critical point of J in X, then by the embedding
X ↪→ L2∗N,m(Ω) and by the boundedness of Ω the function v := |u + u0|p−2(u + u0) lies in
L2∗/(2∗−1)(Ω) ↪→ H−1(Ω). Therefore, the map

X → R, z 7→
∫

Ω
vz

extends to a bounded linear functional on H1
0 (Ω), an element of H−1(Ω). By Riesz’s

Representation Theorem there is w ∈ H1
0 (Ω) such that∫

Ω
vz = 〈w, z〉 for all z ∈ H1

0 (Ω).

In other words, w is the unique weak solution of{
−∆w = v, in Ω,

w = 0, on ∂Ω.

Since u, u0 ∈ X, v is invariant, and the uniqueness implies that w is also invariant, i.e.,
w ∈ X.
For any z ∈ H1

0 (Ω) denote by zG the orthogonal projection in H1
0 (Ω) onto X (with

respect to 〈·, ·〉), and put z⊥ := z − zG. Since u is a critical point of J in X we have
〈u − w, zG〉 = J ′(u)zG = 0. On the other hand, 〈u, z⊥〉 = 〈w, z⊥〉 = 0 since u,w ∈ X. It
follows that ∫

Ω
∇u · ∇z −

∫
Ω
vz = 〈u− w, z〉 = 〈u− w, zG〉+ 〈u− w, z⊥〉 = 0.

Hence u is a weak solution of (PG) and it suffices to prove in all cases that there is a
sequence of critical points (un) ⊆ X of J such that J(un)→∞.
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Proof of Theorem 4.1. Assume (6.1) to be true. By Lemma 6.1 it is sufficient to reach a
contradiction.
If m ≤ N − 3, then (6.1) and Proposition 5.1 imply that

2
N −m

· p

p− 2 ≤
p

p− 1 ,

in contradiction with p < ÃN,m. If m = N − 2, then (6.1) and Proposition 5.1 imply that

1
1 + ε

· p

p− 2 ≤
p

p− 1

for all positive and sufficiently small ε, which is impossible.

Proof of Theorem 4.2. Assume (6.3) to be true. By Lemma 6.2 it is sufficient to reach a
contradiction.
If m ≤ N − 3, then (6.3) and Proposition 5.1 imply that

2
N −m

· p

p− 2 ≤ 2,

in contradiction with p < ÂN,m. If m = N − 2, then (6.3) and Proposition 5.1 imply that

1
1 + ε

· p

p− 2 ≤ 2

for all positive and sufficiently small ε, in contradiction with p < ÂN,m.

Proof of Theorem 4.4. Pick γ ∈ int Ik,` such that p < h̃k,`(γ). Assume (6.1) to be true.
Together with Proposition 5.2 it follows that

p

γ(p− 2) ≤
p

p− 1 ,

in contradiction with p < 2 + 1
γ−1 . Hence Lemma 6.1 implies the result.

Proof of Theorem 4.5. Pick γ ∈ int Ik,` such that p < ĥk,`(γ). It follows in particular that
p < h̃k,`(γ). Assume (6.3) to be true. Together with Proposition 5.2 it follows that

p

γ(p− 2) ≤ 2,

in contradiction with p < 2 + 2
2γ−1 . Hence Lemma 6.2 implies the result.
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A. The Heat Kernel in a Weighted Space
This Appendix provides background material for Section 3. We continue to assume that
Ω ⊆ RN is bounded and of class C2,β and prove the needed properties of the full heat
kernel, i.e., including nonsymmetric functions. These properties remain true trivially when
restricting to G-symmetric functions.
Suppose that q ∈ C1

(
Ω
)
is positive on Ω. In this section denote by L2

q(Ω) the q-weighted
space L2(Ω) with scalar product

〈v, w〉q :=
∫

Ω
vwq

and associated norm |·|2,q, which is equivalent to the original norm |·|2 in L2(Ω). From now
on all function spaces are over Ω unless otherwise noted.
In the Hilbert space L2

q consider the strongly elliptic operator A := −∆/q with domain
D(A) := H2 ∩H1

0 . Then A is a densely defined symmetric operator. The standard theory
for the Dirichlet Laplacian implies that for every v ∈ L2 there is u ∈ D(A) such that

−∆u = qv,

or, in other words, that A is surjective. It follows from [35, Theorem 13.11(d)] that A is
self-adjoint. Moreover, since Ω is bounded, the theorem of Rellich-Kondrakov implies that
its resolvent is compact. The quadratic form QA of A is given on D(A) by

QA(v, w) := 〈Av,w〉q =
∫

Ω
∇v · ∇w,

which coincides with the quadratic form of −∆, and whose form closure has domain H1
0 .

This is true in L2
q and L2 since the norms are equivalent. Moreover, C∞c is a form core for

QA. In what follows we set

QA(u) := QA(u, u) =
∫

Ω
|∇u|2 ≥ 0

for u ∈ H1
0 . Hence A is a positive operator, A ≥ 0.

Now consider ϕ ∈ C∞c . It follows that |ϕ| ∈ H1
0 and that

QA(|ϕ|) =
∫

Ω
|∇|ϕ||2 =

∫
Ω
|∇ϕ|2 = QA(ϕ).

Moreover, defining a function ϕ∗ by

ϕ∗(x) :=


ϕ(x), ϕ(x) ∈ [0, 1],
0, ϕ(x) < 0,
1, ϕ(x) > 1,
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we obtain ϕ∗ ∈ H1
0 and

QA(ϕ∗) =
∫
ϕ−1([0,1])

|∇ϕ|2 ≤
∫

Ω
|∇ϕ|2 = QA(ϕ).

Hence, by [19, Lemma 1.3.4], the semigroup e−tA is a symmetric Markov semigroup as
defined on page 22 loc. cit.
As for the Dirichlet Laplacian in L2 one proves that A is sectorial in L2

q. Hence e−tA is
also an infinitely differentiable strongly continuous semigroup in L2

q: for every u ∈ L2
q the

map U : [0,∞)→ L2
q given by

U(t) := e−tAu

is continuous, and it is infinitely differentiable in (0,∞). For t > 0 it holds true that
U(t) ∈ D(A),

U ′(t) = −AU(t),

and U(0) = u. By the standard theory of linear parabolic equations, the function ū(·, t) :=
U(t) is a classical solution of

q(x) ∂
∂t
ū(x, t) = ∆ū(x, t), (x, t) ∈ Ω× (0,∞),

ū(x, 0) = u(x), x ∈ Ω,
ū(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞).

Moreover, using Nash’s inequality one shows exactly as in the proof of [19, Theorem 2.4.6]
that e−tA is ultracontractive, in the sense that it provides a bounded linear operator from L2

q

into L∞ for every t > 0. Here one only needs to replace |·|2 by |·|2,q. Consequentially, [19,
Theorems 2.1.2 and 2.1.4] apply and yield the following: e−tA is of trace class for all
t > 0, that is, if (µi) is the increasing sequence of eigenvalues of A, repeated according to
multiplicity, then

(A.1)
∞∑
i=1

e−tµi <∞ for all t > 0.

Moreover, if Ψi denotes the eigenfunction corresponding to µi, normalized to |Ψi|2,q = 1,
then Ψi ∈ L∞(Ω),

H(x, y, t) :=
∞∑
i=1

e−tµiΨi(x)Ψi(y)

converges absolutely and uniformly on Ω × Ω × [κ, 0) for every κ > 0, and H is the heat
kernel of A in the sense that H(·, ·, t) is the integral kernel of e−tA for t > 0:

∀u ∈ L2
q ∀x ∈ Ω: (e−tAu)(x) =

∫
Ω
H(x, y, t)u(y)q(y) dy.
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Moreover, H ≥ 0 and, by Mercer’s Theorem in the form of [25, Theorem 3.a.1], it holds
true that

(A.2) sup
i∈N
|Ψi|∞ <∞.

Note that the set {Ψi | i ∈ N} is orthonormal in L2
q.

We claim that there is C > 0 such that Ψi ∈ C2(Ω) and

‖Ψi‖C2(Ω) ≤ C(1 + µ2
i ), for all i ∈ N.(A.3)

In fact, since Ψi is a weak solution of

(A.4)
{
−∆Ψi = µiqΨi, in Ω,

Ψi = 0, on ∂Ω,

it is well known by standard regularity estimates that Ψi ∈ C2,β(Ω) is a classical solution
of (A.4). From Sobolev’s embedding and [21, Lemma 9.17] we obtain

‖Ψi‖C0,β(Ω) ≤ C‖Ψi‖W 2,N ≤ Cµi|Ψi|N ≤ Cµi|Ψi|∞ ≤ Cµi,

where C is independent of i by (A.2). And, last but not least, [21, Theorem 6.6] implies
that

‖Ψi‖C2,β(Ω) ≤ C(|Ψi|∞ + µi‖q‖C0,β(Ω)‖Ψi‖C0,β(Ω)) ≤ C(1 + µ2
i ),

where C is independent of i. This proves the claim.
From (A.1) it follows easily that

∞∑
i=1

µsie−tµi <∞ for all s, t > 0.

Together with (A.2) and (A.3) this implies for all j, k ∈ {1, 2, . . . , n} that
∞∑
i=1

µie−tµiΨi(x)Ψi(y),
∞∑
i=1

e−tµiΨi(x)∂jΨi(y), and
∞∑
i=1

e−tµiΨi(x)∂j∂kΨi(y)

converge absolutely and uniformly on Ω×Ω×[κ, 0) for every κ > 0. HenceH is continuously
differentiable in t and twice continuously differentiable in y, and by (A.4)

(
∂

∂t
− ∆y

q

)
H = 0, in Ω× Ω× (0,∞),

H = 0, in ∂Ω× Ω× (0,∞) ∪ Ω× ∂Ω× (0,∞).
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