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Abstract

We consider the dynamics of the semiflow associated with a class of semilin-
ear parabolic problems on a smooth bounded domain, posed with homogeneous
Dirichlet boundary conditions. The distinguishing feature of this class is the in-
definite superlinear (but subcritical) growth of the nonlinearity at infinity. We
present new a priori bounds for global semiorbits that enable us to give dynam-
ical proofs of known and new existence results for equilibria. In addition, we can
prove the existence of connecting orbits in many cases.

One advantage of our approach is that the parabolic semiflow is naturally order
preserving, in contrast to pseudo-gradient flows considered when using variational
methods. Therefore we can obtain much information on nodal properties of equi-
libria that was not known before.

1. Introduction

We consider the parabolic problem

(Pλ)


ut −∆u = λu+ a(x)g(u) + h(x, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
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for u = u(x, t) and a smooth bounded domain Ω ⊂ RN . Here λ ∈ R, a ∈ L∞(Ω) may
change sign, g ∈ C1(R,R) is superlinear and subcritical, and h : Ω×R → R has at most
linear growth in u ∈ R as |u| → ∞. We require g(0) = 0 and h( . , 0) ≡ 0 so that u ≡ 0
is a (trivial) solution.

In recent years a number of papers appeared concerning the existence of stationary
solutions of (Pλ), i. e. solutions of the elliptic problem

(Eλ)

{
−∆u = λu+ a(x)g(u) + h(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where u = u(x). Most papers deal with the existence of positive solutions of (Eλ) using
either fixed point arguments based on a priori estimates as e. g. Berestycki, Cappuzzo-
Dolcetta and Nirenberg [13], Chen and Li [19], or variational methods as Alama and
Tarantello [3], Berestycki, Cappuzzo-Dolcetta and Nirenberg [14]. Let 0 < λ1 < λ2 <
λ3 < . . . denote all distinct Dirichlet eigenvalues of −∆ on Ω and

λ+ := sup{λ : (Eλ) possesses a positive solution},
λ− := sup{λ : (Eλ) possesses a negative solution}.

If λ < λ1 then under various hypotheses on a, g and h the mountain pass theorem
yields a positive and a negative solution of (Eλ), hence λ+, λ− ≥ λ1; cf. [3]. Under some
additional assumptions on a, Alama and Tarantello [3] proved that λ+, λ− > λ1 and
that (Eλ) has at least two positive and two negative solutions if λ1 < λ < min{λ+, λ−}.
In the case λ < λ1 Alama and Del Pino [2] obtained a third nontrivial solution, and in
the case λ1 < λ < min{λ2, λ

+, λ−} a fifth nontrivial solution. They do not have any
nodal information on these “possibly changing-sign” solutions and they have to assume
that a has a “thick” zero set, i. e.

(1.1) {x ∈ Ω : a(x) > 0} ∩ {x ∈ Ω : a(x) < 0} = ∅.

This case has also been considered in the recent paper [18] of Chang and Jiang. They
obtained a nontrivial solution provided λ does not belong to the Dirichlet spectrum of
−∆ in Ω, nor to the Dirichlet spectrum of −∆ in the interior of a−1(0). If in addition the
set of all positive and negative solutions is bounded then they showed that this solution
does change sign. We refer the reader to [5, 21] for sufficient conditions concerning
this boundedness assumption. On the other hand, if a ∈ C2(Ω), ∇a(x) 6= 0 whenever
a(x) = 0, and some additional hypotheses are satisfied then the existence of a nontrivial
solution was proved by Ramos, Terracini and Troestler in [42], but no information on
the nodal properties of the solution was provided.

There do not seem to be many papers investigating the long time dynamics associated
to (Pλ) with an indefinite superlinear nonlinearity. In particular, nothing seems to be
known about the dynamics of (Pλ) when the initial value changes sign. In this paper we
provide results on (Pλ) that in addition yield new information about equilibria, especially
about equilibria which change sign. These equilibria will be called nodal as opposed to
signed equilibria which do not change sign. We obtain three types of results:
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(1) We show the existence of nodal solutions of (Eλ) without assuming (1.1) or any
a priori bound for signed solutions of (Eλ).

(2) We obtain new multiplicity theorems for nodal solutions of (Eλ). For instance,
we prove the existence of two or three nodal solutions if λ2 < λ < max{λ+, λ−}
or λ2 < λ < min{λ+, λ−}, respectively (and we also show that λ± can be
arbitrarily large depending on a, g, h).

(3) We prove the existence of connecting orbits between nodal equilibria of (Pλ)
and the trivial equilibrium u ≡ 0.

Observe that nodal equilibria of (Pλ) and zero are not ordered, therefore the result of
Matano [34] on the existence of connecting orbits does not apply.

There are three main difficulties dealing with (Pλ) and (Eλ) when the nonlinearity is
indefinite superlinear. First, compactness conditions are nontrivial, like the Palais-Smale
condition for the energy functional Φ ∈ C1(H1

0 (Ω)) associated to (Eλ). This problem
is even more difficult for (Pλ) where one needs a priori bounds for global orbits with
bounded energy, not just for Palais-Smale sequences. A second difficulty is that the
linking arguments in the indefinite setting are more complicated. This can be seen in
the paper [42] by Ramos, Terracini and Troestler, for instance. A third major difficulty
appears when one wants to prove that a certain solution of (Eλ) changes sign. In order
to illustrate this problem consider the Dirichlet problem

(1.2)

{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Suppose that f satisfies the one-sided Lipschitz condition

(1.3) inf
u 6=v, x∈Ω

f(x, u)− f(x, v)

u− v
> −k for some k ≥ 0.

Then the operator
u 7→ K(u) := (−∆ + k)−1

(
f(·, u) + ku

)
is (strongly) order preserving. The gradient vector field ∇Φ associated to the functional
Φ ∈ C1(E) with respect to a suitably chosen scalar product on E := H1

0 (Ω) has the
form ∇Φ = Id − K. It follows that one can construct a pseudo gradient flow which
leaves the cones P+ := {u ∈ E : u ≥ 0 a. e.} and P− := −P+ positively invariant. This
is essential when one wants to find critical points of Φ outside of P+ ∪ P− as one can
see in the recent papers [8, 10, 11, 20, 29] on nodal solutions for (1.2) when (1.3) holds.
This approach does not work for indefinite nonlinearities because (1.3) necessarily fails.
In [29] Li and Wang suggest a modification of the gradient flow in order to solve this
problem. However their idea does not seem to work either: it is based on the claim
that the inverse of some operator A0 (see p. 390 in [29]) is order-preserving but this
is not true. A different method has been applied by Chang and Jiang in [18]. They
also use variational arguments (Morse theory, critical groups) but they do not need the
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positive invariance of the cones P±. However, for their approach it is essential that (1.1)
is satisfied and the set of signed solutions is bounded.

In [1, 41] (see also the references therein) the authors showed that the parabolic
semiflow can be used to find nodal equilibria for definite superlinear problems. A reader
who is only interested in solutions of (Eλ) may think of the parabolic semiflow as a
substitute of the negative gradient flow which has better order preserving properties.
However, the parabolic semiflow is interesting in itself since it models the dynamical
behavior in many applications coming from natural sciences and engineering. Thus it
is well worthwhile to understand the long-time behavior of solutions of (Pλ). Due to
g being superlinear the parabolic semiflow generated by (Pλ) is nondissipative and a
global attractor does not exist. Quite to the contrary, solutions may (and do) blow up
in finite time, a phenomenon which has been widely investigated in recent years. This
makes a priori estimates for global solutions difficult to obtain already in the definite
case. When the nonlinearity is definite a priori estimates have been obtained by Ni,
Sacks and Tavantzis [36], Cazenave and Lions [16], Giga [23] and Quittner [39, 40], but
no estimates seem to be available in the indefinite case.

We shall provide the first a priori estimates for global solutions of (Pλ) with indefinite
nonlinearity. These estimates are of independent interest since such bounds are known
to have applications to blow-up [24, 40], to the existence of periodic solutions [41], and
to control problems [6]. Unfortunately we need to impose a technical restriction on the
growth of g. In order to give an idea of our results assume for simplicity that g(u) =
|u|p−1u+ g1(u) where g1 ∈ C1(R,R) has bounded derivative and g1(0) = g′1(0) = 0, and
suppose that h ≡ 0. Suppose also that a ∈ C1(Ω) changes sign and has 0 as a regular
value. Define

pS :=
N + 2

(N − 2)+

and pCL :=
3N + 8

(3N − 4)+

,

where α+ denotes max{α, 0} if α ∈ R, and α/0 := ∞ if α > 0. Clearly pS is the
critical Sobolev exponent for the embedding H1

0 (Ω) ↪→ Lp+1(Ω), and pCL is the constant
introduced by Cazenave and Lions in [16]. We define a new constant p∗1 ∈ [pCL, pS] (see
(3.3) below) and prove a priori estimates for global solutions of (Pλ) provided p < p∗1.
We do not know how to avoid this restriction. On the other hand, p∗1 is close to pS for
N large in the sense that pS−p∗1 = O(1/N3) as N →∞. In addition, our results remain
true for all p ∈ (1, pS) in the radial setting.

We now state some typical results for the model problem

(1.4)


ut −∆u = λu+ a(x)(|u|p−1u+ g1(u)), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

First we consider a priori bounds for global solutions with bounded energy.

Theorem A. Suppose that 1 < p < p∗1.

(a) For all C0, η > 0 there exists C > 0 with the following property: If u is any global
solution of (1.4) satisfying |Φ(u(t))| ≤ C0 for all t > 0 then ‖u(t)‖H1(Ω) ≤ C
for all t > η.
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(b) Let u be a solution of (1.4) which blows up in a finite time T in the H1-norm.
Then Φ(u(t)) → −∞ as t→ T−.

Based on these and related a priori bounds we obtain results on equilibria and
connecting orbits of (1.4). Typical results are:

Theorem B. Suppose that 1 < p < p∗1.

(a) If λ 6= λk for every k ≥ 2 then there exists a nodal equilibrium u and a connecting
orbit between u and 0.

(b) If λ2 < λ < min{λ+, λ−} then there exist at least seven nontrivial equilibria:
two positive, two negative, three nodal.

(c) If g1 is odd then there exists a sequence of nodal equilibria with unbounded energy.
All these equilibria have a connecting orbit to 0.

(d) If λ2 < λ < min{λ+, λ−} and if g1 is odd then there exist at least 2(µ(0) − 1)
nodal equilibria with the following property: if u is any of these equilibria then
there exists a connecting orbit from 0 to u. Here µ(0) denotes the Morse index
of 0.

In the case λ = λk we can also prove the existence of a nodal equilibrium of (Pλ)
but we need to assume additional hypotheses if λ > λ+ (which we believe to be purely
technical). In case (b) of Theorem B we also have results on connecting orbits between
(some of) the equilibria. Concerning (c) note that the existence of infinitely many pairs
of equilibria is already proved in [3] for odd nonlinearities. The essential new information
here is the existence of connecting orbits.

We would like to emphasize that we consider much more general situations than the
one described above: the function g1 may be superlinear, a need not be continuous and
the zero set may be thick as in (1.1) or it may have measure 0. The precise statement
of most of our results can be found in the following section (see Theorems 2.1, 2.3, 2.6
and Remarks 2.7, 2.8, 2.9 and 2.10.)

Acknowledgement. Petr Kaplický and Pavol Quittner would like to thank the Institute
of Mathematics at the University of Giessen for the hospitality received during the stay
in the academic year 2003–2004.

2. Statement of Results

Throughout the paper we fix N in N, a smooth and bounded domain Ω ⊂ RN , and
denote

E := H1
0 (Ω) and X := C1(Ω) ∩ E.

We also denote by L the operator −∆ in E, by σ(L) its spectrum, by 0 < λ1 < λ2 < . . .
its distinct eigenvalues.
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Let FS denote the set of all Carathéodory functions f : Ω×R → R such that f(·, 0) ∈
L∞(Ω) and

|f(x, u)− f(x, v)| ≤ C|u− v|(1 + |u|r−1 + |v|r−1),

where C > 0 and r ∈ [1, pS) may depend on f . We shall also write g ∈ FS if g : R → R
and the function g̃(x, u) := g(u) belongs to FS.

Now consider functions a, g and h as in (Pλ). We define

G(u) :=

∫ u

0

g(s) ds, H(x, u) :=

∫ u

0

h(x, s) ds,

and
Ω+ := {x ∈ Ω : a(x) > 0},
Ω0 := {x ∈ Ω : a(x) = 0},
Ω− := {x ∈ Ω : a(x) < 0}.

If int Ω0, the interior of Ω0, is a Lipschitz domain then we denote by L0 the operator
−∆ in H1

0 (int Ω0) and by σ(L0) its spectrum.
In Section 3 we define constants p∗i = p∗i (N), i = 1, 2, such that (N + 3)/(N − 1) ≤

p∗2 ≤ p∗1 ≤ pS and p∗1 ≥ pCL, see (3.3) and (3.51).
We consider the following assumptions:

(A1) a ∈ L∞(Ω), the sets Ω+,Ω− are open and Ω+ 6= ∅. In addition, g, h ∈ FS,
g ∈ C1(R,R), the derivative hu(x, u) exists for all (x, u) and hu(x, ·) is continuous
for a.e. x.

(A2) There is C > 0 such that |h(x, u)| ≤ C(1 + |u|) for all (x, u) ∈ Ω× R.

(A3) There are p ∈ (1, p∗1) and C > 0 such that |g(u) − |u|p−1u| ≤ C(1 + |u|) for all
u ∈ R.

(A4) If λ ≥ λ1 then one of the following holds:

(A4.1) meas Ω0 = 0

or

(A4.2)
int Ω0 is a Lipschitz domain, meas(Ω0 \ int Ω0) = 0, λ /∈ σ(L0) and
lim|u|→∞ h(x, u)/u = 0 for every x ∈ int Ω0.

(A5) g(0) = g′(0) = 0, and h(x, u) = o(|u|) as u → 0, uniformly in x. In addition, the
derivatives g′ and hu(x, ·) are Hölder continuous at u = 0, uniformly in x.

(A6) a ∈ C1(Ω) and 0 is a regular value of a.

(A7) a(x)G(u) +H(x, u) ≥ 0 for small |u|.
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(A8) a ∈ C2(Ω), 0 is a regular value of a and a 6= 0 on ∂Ω. In addition, there are
p ∈ (1, p∗2) and C > 0 such that

lim
|u|→∞

g(u)

|u|p−1u
= C.

Let us assume (A1) for the rest of this section. This implies that (Pλ) generates a
compact continuous (local) semiflow on E. If for two equilibria u1, u2 ∈ E there exists
a global orbit through u ∈ E such that u1 ∈ α(u) and u2 ∈ ω(u), then we say that u1

connects to u2 and write u1 � u2. Here α(u) and ω(u) denote the α- and ω-limit sets of
u, respectively.

Define the usual energy functional Φ: E → R by

Φ(u) :=
1

2

∫
Ω

(
|∇u|2 − λu2

)
dx−

∫
Ω

(
a(x)G(u) +H(x, u)

)
dx .

Then Φ ∈ C2(E,R) and the dynamical system defined by (Pλ) possesses Φ as a strict
Lyapunov function, i. e.

Φ(u(t2)) < Φ(u(t1)) if 0 ≤ t1 < t2 < T

for a non-stationary solution u : [0, T ) → E of (Pλ). The solutions of (Eλ) coincide with
the critical points of Φ. If (A5) is true then 0 is a critical point of Φ. As usual, for c ∈ R
denote the corresponding sublevel set of Φ by

Φc := {u ∈ E : Φ(u) ≤ c }.

Denote by Λ+ (Λ−) the set of λ ∈ R such that (Eλ) admits a positive (negative)
solution. Recall that λ± = sup Λ±. Assuming (A1)–(A5) (or (A8) instead of (A3) and
(A4)) we will show that λ1 ≤ λ± < ∞, but also that λ+ and λ− may be arbitrarily
large (see Theorem 2.3(a), Lemma 4.3, Proposition 4.6). In addition, (−∞, λ±) ⊂ Λ±

and λ+ ∈ Λ+ if λ+ > λ1 (similarly for λ−, see Corollary 5.10 and cf. [5]). Replacing
g(u) by −g(−u) and h(x, u) by −h(x,−u) if necessary, we may assume without loss of
generality that λ+ ≥ λ−.

We can now state the first main result of the present paper:

Theorem 2.1. Assume (A1)–(A5) and λ+ ≥ λ−. A nodal equilibrium of ϕ exists in the
following cases:

(a) λ < λ2.

(b) λ2 ≤ λ ≤ λ+.

(c) λ+ < λ, λ /∈ σ(L) and (A6) holds.

(d) λ+ < λ, λ ∈ σ(L), (A7) and (A6) hold.
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We can also state about connections with 0 that a nodal equilibrium u exists such that
u � 0 in case (a); 0 � u in case (b) with λ2 < λ; u � 0 or 0 � u in case (c); and either
Φ(u) ≤ 0 or u � 0 in case (d).

Remark 2.2. If λ = λ2 ≤ λ+ then Theorem 2.1 does not yield any information about
connecting orbits between the nodal equilibrium and zero. However, if we assume that
Φ ≤ 0 on the eigenspace of L corresponding to the spectral set {λ1, λ2 } then we can
argue as in [1] to obtain a nodal equilibrium that connects to 0. A similar integral
condition has been used in [25,32].

Our second main result concerns multiplicity of equilibria:

Theorem 2.3. Assume (A1)–(A5) and λ+ ≥ λ−.

(a) If λ < λ1 there exist at least three nontrivial equilibria that connect to 0: one
positive, one negative, and one nodal.

(b) If λ1 < λ < λ+ there exist at least three nontrivial equilibria: two positive and
one nodal.

(c) If λ1 < λ < λ− there exist at least five nontrivial equilibria: two positive, two
negative, and one nodal.

(d) If λ2 < λ < λ+ there exist at least four nontrivial equilibria: two positive and
two nodal.

(e) If λ2 < λ < λ− and λ 6∈ σ(L) there exist at least seven nontrivial equilibria: two
positive, two negative, and three nodal.

Remark 2.4. Instead of assuming λ 6∈ σ(L) in Theorem 2.3(e) it is sufficient to assume
that the critical group Cµ(Φ, 0) 6= 0 for some µ ≥ 2; cf. [17, 35] and Section 6 below for
a definition of the critical groups.

Remark 2.5. We also have some information on the existence of connecting orbits in
the statements (b)–(e) of Theorem 2.3; see the proofs and Remark 6.8. In addition, the
proofs yield information on the Morse type of the solutions, i. e. whether a solution is a
local minimum, or of mountain pass type (cf. [26]), or of Morse index 2 type.

Theorem 2.6. Assume (A1)–(A5) and that the functions g and h(x, ·) are odd.

(a) There exists a sequence of nodal equilibria with unbounded energy Φ that connect
to 0.

(b) If λ2 < λ < λ− then there are at least 2(µ(0)−1) nodal equilibria that 0 connects
to. Here µ(0) denotes the Morse index of 0.

Remark 2.7. Hypotheses (A3) and (A4) in Theorems 2.1, 2.3, 2.6 can be replaced by
assumption (A8). This follows from the proofs of those theorems and from Theorem 3.13
below. Notice that (A8) allows to consider superlinear perturbations of the power func-
tion |u|p−1u.
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Remark 2.8. If Ω is a ball or an annulus, the functions a and h(·, u) are radially symmetric
and if we restrict ourselves to radial solutions, then the condition p < p∗1 in (A3) (and
p < p∗2 in (A8)) may be replaced by p < pS. This follows from Corollary 3.15 and its
proof. Of course, in this case we have to consider just those eigenvalues λi which possess
radial eigenfunctions.

Remark 2.9. We do not assume that Ω− ∪ Ω0 6= ∅. Therefore the results stated above
are also true for definite superlinear equations, and some of them are new even in that
setting. In addition, if a is positive and bounded away from zero, then the condition
p < p∗1 (or p < p∗2) may be replaced by p < pS, due to the estimates in [40].

Remark 2.10. The upper bound p∗1 for the exponent p in (A3) is greater than the ex-
ponent pCL whenever N > 2. If N = 2 then under some additional assumptions on a
and/or λ we can prove many of our results for some p > pCL as well: see Theorem 3.16
and Remark 3.17.

The paper is organized as follows. Section 3 is devoted to a priori estimates of
global solutions of (Pλ) and other auxiliary results. In Section 4 we study the existence
of signed solutions of (Eλ). If λ > λ2 and if there exist a positive supersolution u and a
negative subsolution u of (Eλ) then the existence of multiple nodal solutions between u
and u is established in Section 6. Nodal solutions lying outside the order interval [u, u]
(and their connections to the zero solution) are found in Section 5. In that section we
also prove the existence of nodal equilibria in the case when no positive supersolutions
(or negative subsolutions) exist or when λ < λ2. Finally, in Section A we provide a
technical result that is claimed and used in [1] without proof.

The theorems stated above are consequences of many particular results that are
scattered throughout the paper. For the reader’s convenience we show now which results
have to be used in their proofs.

Proof of Theorem 2.1. Part (a) is exactly the statement of Proposition 5.6. Assertion (b)
is a consequence of Proposition 5.12 and Corollary 5.10. Parts (c) and (d) follow by
Proposition 5.7(a) and (b). Note that in this case the solution must be nodal as λ >
λ+.

Proof of Theorem 2.3. In case (a) Proposition 5.5 yields positive and negative equilibria
u± of (Pλ) such that u± � 0. Existence of a nodal equilibrium u∗ � 0 follows by
Proposition 5.6.

Parts (b), (c) and (d) follow from Corollary 5.10, Corollary 5.11 and Proposition 5.12.
In case (e) it follows as in the beginning of the proof of Corollary 5.10 that (6.2) holds.
Therefore we can apply Propositions 6.3 and 6.4, in addition to the statements made
above. Note in this respect that Ck(Φ, 0) 6= 0 by [17, Theorem I.4.1] if λk < λ < λk+1.

Proof of Theorem 2.6. The first part is a consequence of Proposition 5.13 and the second
part follows from Proposition 6.9.
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2.1. General Notation

We set R+ := (0,∞) and R+
0 := [0,∞). By C∞

c (U) we denote the real C∞-functions
on an open subset U of RN with compact support in U . Denote by q′ := q/(q − 1) the
conjugate exponent of q if q > 1. By ‖ · ‖s,q, s > 1/q − 1, q > 1, we denote the norm in
W s,q(Ω), where W s,q(Ω) is the standard Sobolev-Slobodeckii space if s ≥ 0 and it is the
dual of the Sobolev-Slobodeckii space W−s,q′(Ω) if s < 0. By ‖·‖q we denote the norm in
Lq(Ω), q ≥ 1. As usual we denote by H1

0 (Ω) the closure of C∞
c (Ω) in H1(Ω) = W 1,2(Ω).

For a topological vector space Y of real functions we denote by PY the cone of
functions taking values in R+

0 . The interior of PY will be denoted by P0Y . In our
setting we use the notation

u ≥ v :⇔ u− v ∈ PH1(Ω)

u > v :⇔ u− v ∈ PH1(Ω) r {0}
u� v :⇔ u− v ∈ P0

(
C1(Ω) ∩H1

0 (Ω)
)
.

If ϕ is a continuous (local) semiflow on a metric space Y , denote by T+ : Y → (0,∞]
the maximal existence time for ϕ. The domain of ϕ is given by

D := { (t, u) ∈ R+
0 × Y : 0 ≤ t < T+(u) } ,

and for t ≥ 0 we also set
Dt := {u ∈ Y : t < T+(u) } .

Note that D is open in R+
0 × Y and Dt is open in Y . For every t ≥ 0 we write the

time-t-map as ϕt : Dt → Y and we set ϕ−t := (ϕt)−1.
For A ⊂ Y we define its positive semiorbit, its negative semiorbit, and its orbit by

O+(A) :=
⋃
t≥0

ϕt(Dt ∩ A) ,

O−(A) :=
⋃
t≥0

ϕ−t(A) ,

O(A) := O+(A) ∪ O−(A) ,

respectively. We also write O(u) := O({u}) for the orbit through u. We say A is
positive invariant if O+(A) ⊂ A and A is negative invariant if O−(A) ⊂ A. We say A
is invariant if A is positive and negative invariant.

For a closed subset A of Y we define the set of attraction of A by

A(A) := {u ∈ Y : A ⊂ U ⊂ Y, U open ⇒ ∃t ≥ 0: O+(ϕt(u)) ⊂ U }.

For one point sets we also write A(u) instead of A({u}). Moreover, by

∂A(A) := A(A) rA(A)

we denote the boundary of the set of attraction of A. Note that if A has a neighborhood
that is included in A(A) then A(A) is open as a consequence of the continuity of ϕ.
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As usual we define

α(A) :=
⋂
t≥0

⋃
s≥t

ϕ−s(A) and ω(A) :=
⋂
t≥0

⋃
s≥t

ϕs(Ds ∩ A),

the α- and ω-limit sets of A ⊂ Y .

3. The Parabolic Semiflow and A Priori Bounds

This section is devoted to the study of the parabolic semiflow induced by (Pλ), and to a
priori estimates of global orbits. To state some of the results in more generality, consider
the problem

(3.1)


ut −∆u = f(x, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Notice that the problem (3.1) is well posed in E if f ∈ FS. In addition, the corresponding
local semiflow ϕ in E is compact and ϕt : E → X is continuous for every t > 0. From the
parabolic comparison principle it follows that u, v ∈ E and u > v imply ϕt(u) � ϕt(v)
if t is such that ϕt(u) and ϕt(v) are defined. The solution of (3.1) at time t will be also
denoted by u(t;u0).

Define

(3.2) p∗ :=
9N2 − 4N + 16

√
N(N − 1)

(3N − 4)2

and

(3.3) p∗1 :=


pCL if N = 1, 2,

18

5
if N = 3,

p∗ if N > 3.

Notice that pS > p∗ > pCL if N > 1 and p∗ > p∗1 > pCL if N = 3. We will assume that

(3.4) f ∈ FS and |f(x, u)| ≤ Cf (1 + |u|p),

for some p ∈ (1, p∗1) and Cf > 0. We will also often assume the superlinearity condition

(3.5) f(x, u)u ≥ θF (x, u)− λFu
2 − CF , θ > 2, λF , CF ∈ R,

where F (x, u) :=
∫ u

0
f(x, s) ds, and the following condition on the initial data u0

(3.6) u is a global solution of (3.1), |Φ(u0)| ≤ C0,

11



where

Φ(u) :=
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx

is the associated energy functional. In some of our assertions we will also assume that

(3.7) Φ(u(t)) ≥ −CΦ for every t ≥ 0,

and

(3.8)

∫
Ω

u2(x, t) dx ≤ CL2 for every t ≥ 0.

By c, C we denote generic constants which may depend on Ω, N , p, Cf , CF , θ, λF ,
C0 (and on CΦ or CL2 if (3.7) or (3.8) are assumed, respectively) and which may change
from step to step but which are independent of u0. Fixed constants depending on the
parameters mentioned above will be denoted by c1, C1, c2, C2, . . . .

Lemma 3.1. Assume f ∈ FS, (3.6) and (3.7). Then

(3.9) |Φ(u(t))| ≤ C

and

(3.10)

∫ ∞

0

∫
Ω

u2
t dx dt ≤ C.

Proof. Bound (3.9) follows from (3.6), (3.7) and the fact that the function t 7→ Φ(u(t))
is nonincreasing. Bound (3.10) follows from the estimate∫ t2

t1

∫
Ω

u2
t dx dt ≤ Φ(u(t1))− Φ(u(t2)), t2 > t1 ≥ 0.

Theorem 3.2. Assume (3.4) with p ∈ (1, p∗1) and (3.5). Then, given η > 0, there exists
C = C(η) such that

(3.11) ‖u(t)‖1,2 ≤ C for every t > η,

for all solutions u satisfying (3.6), (3.7) and (3.8).

Proof. Let u be a solution satisfying (3.6), (3.7) and (3.8). Multiplying the equation in
(3.1) by u, integrating over Ω, using (3.5), (3.8) and Φ(u(t)) ≤ Φ(u0) ≤ C, we get

(3.12)

1

2

d

dt

∫
Ω

u2 dx = −
∫

Ω

|∇u|2 dx+

∫
Ω

f(x, u)u dx

≥ −
∫

Ω

|∇u|2 dx+ θ

∫
Ω

F (x, u) dx− λF

∫
Ω

u2 dx− CF |Ω|

≥ c

∫
Ω

|∇u|2 dx− θΦ
(
u(t)

)
− C

≥ c

∫
Ω

|∇u|2 dx− C,

12



where c := θ/2− 1 > 0. This estimate, Cauchy’s inequality and (3.8) imply

(3.13)
(∫

Ω

|∇u|2 dx
)2

≤ C
(
1 +

∣∣∣ ∫
Ω

uut dx
∣∣∣)2

≤ C
(
1 +

∫
Ω

u2
t dx

)
,

hence (3.10) guarantees

(3.14)

∫ t+η

t

(∫
Ω

|∇u|2 dx
)2

dt ≤ C1 for every t ≥ 0.

In particular, there exists t1 ∈ [0, η] such that

(3.15) ‖u(t1)‖4
1,2 ≤ C1/η.

Interpolation between (3.10) and (3.14) yields a uniform bound for u(t) in Lr(Ω) when-
ever r < 6N/(3N − 4), see [16].

If N ≤ 2 then p < pCL and we can fix r such that p < 1 + 2r/N . Since ‖u(t)‖r ≤ Cr

and (3.15) is true, the bound (3.11) follows from [38], for example.
Next assume that N ≥ 3. Considering the solution u on the interval [t1,∞) instead

of [0,∞) we may assume that

(3.16) ‖u0‖1,2 ≤ C2.

Standard regularity results imply u(t) ∈ C1(Ω) for every t > 0. More careful (but
straightforward) estimates based on the variation-of-constants formula guarantee the
existence of δ > 0 and C3 > 0 depending only on the constant C2 in (3.16) (and
other fixed data of the problem) such that ‖u(t)‖1,2 ≤ C3 for every t ∈ [0, δ] and
‖u(t)‖C1(Ω) ≤ C3 for every t ∈ [δ, 2δ]. Considering the solution u on the interval [δ,∞)

instead of [0,∞) we may assume that u0 ∈ C1(Ω) and

(3.17) ‖u(t)‖C1(Ω) ≤ C3 for every t ∈ [0, δ].

Fix T > δ + 1 and set

D1,∞ = D1,∞(u0, T ) := max{1, max
t∈[0,T ]

‖u(t)‖C1(Ω)}.

For r > 1 let us also denote

Dr = Dr(u0, T ) := max{1, max
t∈[0,T ]

‖u(t)‖r}.

We already know that Dr < C for some C independent of u0 and T provided r <
6N/(3N − 4). We want show by a bootstrap argument that the same is true for D1,∞.
More precisely, we will show

(3.18) D1,∞ ≤ CDκ
1,∞, where C > 0 and κ < 1 are independent of u0 and T .

13



Consider ε > 0 small (to be specified later). Since p < 18/5 if N = 3 and p < pS if
N > 3, we have p < 6N/(3N − 4) for every N ≥ 3. In our first bootstrap procedure we
will show that given r ∈ (p, p+ 1), r > 2, there exists r̃ > r such that

(3.19) Dr̃ ≤ CD(p+1)/2
r D

ε/2
1,∞,

where C may depend on ε. Moreover, the difference r̃ − r can be estimated below by
a positive constant which is independent of r and ε. Consequently, starting with some
r ∈

(
2, 6N/(3N − 4)

)
∩ (p, p+ 1), and using Dr < C, after finitely many (say k1) steps

we obtain

(3.20) Dp+1 ≤ CDεM1
1,∞ , M1 :=

1

2

k1−1∑
i=0

(p+ 1

2

)i

.

Notice that the boundedness of the energy implies

(3.21) D1,2 := max{1, max
t∈[0,T ]

‖u(t)‖1,2} ≤ CD
(p+1)/2
p+1 .

Another (standard) bootstrap procedure easily guarantees

(3.22) max
t∈[δ,T ]

‖u(t)‖C1(Ω) ≤ CDM2
1,2 ,

where M2 is a positive constant depending on p. Due to (3.17), estimates (3.22), (3.21)
and (3.20) guarantee (3.18) if we choose ε such that κ := εM1M2(p+ 1)/2 < 1.

Let us prove (3.19). Fix r ∈ (p, p+ 1), r > 2. Set

(3.23) ν :=
r

p
− 1, θ :=

1 + ν

1− ν
· r − 2

r
, r′ :=

r

r − 1
,

and fix η ∈ (0, ε2]. Then ν < 1/(r− 1), θ ∈ (0, 1) and using (3.13) and interpolation we
obtain (cf. [39, (24)] and [40, Remark 2.5(ii)])

(3.24)

‖u(t)‖2
1,2 ≤ C

(
1 + ‖u(t)ut(t)‖1

)
≤ C

(
1 + ‖u(t)‖η,r‖ut(t)‖−η,r′

)
≤ C

(
1 + ‖u(t)‖

√
η√
η,r‖u(t)‖

1−√η
r ‖ut(t)‖θ

−η,1+ν‖ut(t)‖1−θ
−η,2

)
≤ CDε

1,∞Dr

(
1 + ‖ut(t)‖θ

−η,1+ν‖ut(t)‖1−θ
2

)
.

Standard estimates based on the variation-of-constants formula in extrapolated spaces
(see [4]) guarantee the existence of ω > 0 such that, given t ∈ [δ, T ],

‖u(t)‖2−η,1+ν ≤
Ce−ωt

δ1−η/2
‖u0‖1+ν + C

∫ t

0

e−ω(t−s)

(t− s)1−η/2
‖f(·, u(·, s))‖1+ν ds

≤ C
(
1 + sup

s∈(0,T )

‖f(·, u(·, s))‖1+ν

)
≤ C

(
1 + sup

s∈(0,T )

‖u(s)‖p
p(1+ν)

)
≤ CDp

r

14



due to p(1 + ν) = r. Now using the equation in (3.1) we obtain

‖ut(t)‖−η,1+ν ≤ ‖u(t)‖2−η,1+ν + ‖f(·, u(·, t))‖1+ν ≤ CDp
r ,

hence (3.24) implies

(3.25) ‖u(t)‖2
1,2 ≤ CDε

1,∞D
p+1
r

(
1 + ‖ut(t)‖1−θ

2

)
.

Set

(3.26) q = q(r) :=
2

1− θ
=

(1− ν)r

1 + ν − νr
=

2p− r

p+ 1− r
.

Raising (3.25) to the power q, integrating over (t, t + 1) ⊂ (δ, T ) and using (3.10) we
obtain∫ t+1

t

‖u(s)‖2q
1,2 ds ≤ CDεq

1,∞D
(p+1)q
r

(
1 +

∫ t+1

t

‖ut(s)‖2
2 ds

)
≤ CDεq

1,∞D
(p+1)q
r ,

hence

(3.27)
(∫ t+1

t

‖u(s)‖2q
1,2 ds

)1/2q

≤ CD
ε/2
1,∞D

(p+1)/2
r .

Interpolating between (3.27) and (3.10) (see [16] and cf. [39, (11)]) yields

sup
s∈[t,t+1]

‖u(s)‖r̃ ≤ CD
ε/2
1,∞D

(p+1)/2
r ,

provided

r̃ <
2N(q + 1)

q(N − 2) +N
.

Since t ∈ [δ, T − 1] was arbitrary and (3.17) is true, we have obtained the desired bound
for Dr̃. Now (3.26) shows that we can choose r̃ > r if and only if

2(N − 1)r2 − [(3N − 4)p+ 5N ]r + 2N(3p+ 1) > 0.

It is easy to see that the last inequality is satisfied for every r due to p < p∗. (On the
other hand, that inequality fails for some r ∈

(
6N/(3N − 4), (p − 1)N/2

)
if p ≥ p∗.)

Consequently, (3.19) is true and the proof is complete.

Remark 3.3. In the proof of Theorem 3.2 we used some ideas from [39] and [40]. In
fact, if f ∈ C1(Ω × R) then we could use a straightforward modification of the proof
in [39, pp. 201–202]. However, we need the result for less regular f and this requires some
nontrivial changes in that proof. Let us also mention that the a priori bound in [39]
(valid for every p < pS) required an estimate of the form

∫
Ω
|u|p+1 dx ≤ C

∫
Ω
|∇u|2 dx

which is not available in the present situation. Due to this fact we had to replace the
condition p < pS with p < p∗1. Notice that the exponent p∗ is “significantly” greater
than pCL. In fact, pS − p∗ < 1

2
(pS − pCL) for N > 2 and

pS − p∗ = O(N−3), pS − pCL = O(N−2), N →∞.
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Remark 3.4. We can choose η = 0 in Theorem 3.2 if we know that ‖u0‖1,2 ≤ C.

Remark 3.5. Replacing the assumption p < p∗1 by p < pS in Theorem 3.2 and using the
approach from [16] one can still prove that every global solution is bounded. However,
the corresponding bound depends on u0 and cannot be used in our applications.

The a priori bound (3.11) in Theorem 3.2 is based on the weaker a priori bound
(3.8). In what follows we derive sufficient conditions for (3.8).

Theorem 3.6. Assume f ∈ FS and (3.5) with

(3.28) λF < λ1

(θ
2
− 1

)
.

Then the bounds (3.8) and (3.7) are true for all solutions u satisfying (3.6).

Proof. We will use the concavity argument due to H.A. Levine [28]. Denote M(t) :=
1
2

∫ t

0

∫
Ω
u2 dx dt. Using (3.28), we obtain similarly as in (3.12)

(3.29)

M ′′ =
1

2

d

dt

∫
Ω

u2 dx ≥ −θΦ
(
u(t)

)
+ c1

∫
Ω

|∇u|2(x, t) dx− C1

≥ −θΦ(u0) + c1λ1

∫
Ω

u2(x, t) dx− C1

for some c1, C1 > 0. Assume that

(3.30) θΦ(u(t0)) ≤ −C1 − 1 or c1λ1

∫
Ω

u2(x, t0) dx ≥ C1 + θΦ(u0) + 1

for some t0 > 0. Then (3.29) implies 1
2

d
dt

∫
Ω
u2(x, t) dx ≥ 1 for every t ≥ t0, hence

(3.31) lim
t→∞

M ′(t) = lim
t→∞

1

2

∫
Ω

u2(x, t) dx = +∞.

In particular, there exists t1 ≥ t0 such that

c1

∫
Ω

|∇u|2(x, t) dx > C1 + θΦ(u0) for t ≥ t1.

Consequently, for t ≥ t1 we obtain

M ′′ ≥ −θΦ
(
u(t)

)
+ θΦ(u0) ≥ θ

∫ t

0

∫
Ω

u2
t dx dt,

and

MM ′′ ≥ θ

2

(∫ t

0

∫
Ω

u2 dx dt
)(∫ t

0

∫
Ω

u2
t dx dt

)
≥ θ

2

(∫ t

0

∫
Ω

uut dx dt
)2

=
θ

2

(
M ′(t)−M ′(0)

)2 ≥ (1 + α)M ′(t)2

for some α > 0 and t large enough due to (3.31). Thus the function t 7→ M−α(t) is
concave, positive and decreasing for t large, which is a contradiction. Hence (3.30) is
false and the conclusion follows.
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We now turn to the verification of (3.8) in a specialized setting. Therefore assume
that

(3.32) f(x, u) = λu+ a(x)g(u) + h(x, u) .

If g(u) = |u|p−1u, h ≡ 0 and a changes sign, then the assumption (3.28) in Theorem 3.6
requires λ < λ1. The following theorem guarantees that we may allow λ arbitrarily large
provided we assume (A4).

Theorem 3.7. Assume (3.32) and (A1)–(A4). Then (3.8) is true whenever (3.6) and
(3.7) are satisfied.

Proof. Assume on the contrary that there exist u0,k ∈ E and tk > 0 such that |Φ(u0,k)| ≤
C0 and uk(t) := u(t;u0,k) satisfy

inf
t

Φ(uk(t)) ≥ −CΦ and ‖uk(tk)‖2 →∞.

The boundedness of Φ implies (3.10) with u replaced by uk, k = 1, 2, . . . . Using that
estimate and Cauchy’s inequality we obtain∫

Ω

u2
k(x, τ2) dx−

∫
Ω

u2
k(x, τ1) dx = 2

∫ τ2

τ1

∫
Ω

uk∂t(uk) dx dt

≥ −C
(
1 +

∫ τ2

τ1

∫
Ω

u2
k dx dt

)
,

for every τ1 < τ2. Now by Gronwall’s inequality there exists η > 0 such that

min
τ∈[tk,tk+η]

∫
Ω

u2
k(x, τ) dx→∞ as k →∞.

Next (3.10) implies the existence of sk ∈ [tk, tk + η] such that

(3.33)

∫
Ω

(∂tuk)
2(x, sk) dx ≤ C.

Set Lk := ‖uk(sk)‖2. Then Lk →∞ and

(3.34)
d

dt

∫
Ω

u2
k(x, sk) dx ≤ 2

(∫
Ω

u2
k(x, sk) dx

)1/2(∫
Ω

(∂tuk)
2(x, sk) dx

)1/2

≤ CLk.

Since (A1), (A2), and (A3) imply (3.5) with θ := p + 1 and suitable λF , CF > 0, we
obtain similarly as in the proof of Theorem 3.2

(3.35)

1

2

d

dt

∫
Ω

u2
k dx ≥ −

∫
Ω

|∇uk|2 dx+ (p+ 1)

∫
Ω

F (x, uk) dx− λF

∫
Ω

u2
k dx− CF |Ω|

=
p− 1

2

∫
Ω

|∇uk|2 dx− (p+ 1)Φ
(
uk(t)

)
− λF

∫
Ω

u2
k dx− CF |Ω|.
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Now (3.34) and the boundedness of Φ guarantee

(3.36)

∫
Ω

|∇uk|2(x, sk) dx ≤ CL2
k

if k is large enough.
In what follows we write shortly uk instead of uk(·, sk). Denote

Nk :=
(∫

Ω

|∇uk|2 dx
)1/2

and recall from (3.36) that

(3.37) Nk ≤ CLk = C‖uk‖2.

Set

(3.38) α(x) :=


dist(x, ∂Ω+), x ∈ Ω+,

− dist(x, ∂Ω−), x ∈ Ω−,

0 x ∈ Ω0.

Then α is Lipschitz continuous and αa > 0 outside Ω0. Multiplying the equation

∂tuk = ∆uk + λuk + ag(uk) + h(x, uk), x ∈ Ω,

by αuk, integrating over Ω and using (3.33), (A1), (A2), and (A3) we obtain

(3.39)

∫
Ω

αa|uk|p+1 dx = O(N2
k ) as k →∞.

We may assume that uk/Nk converges weakly in E, hence strongly in Lp+1(Ω). If (A4.1)
is true then the corresponding limit w is zero due to (3.39). In particular, uk/Nk → 0 in
L2(Ω) which contradicts (3.37). If (A4.2) is true then w = 0 on Ω r Ω0 due to (3.39),
hence w ∈ H1

0 (int Ω0) due to (A4.2). Since uk solve the equation

∂tuk = ∆uk + λuk + h(x, uk), x ∈ int Ω0,

and (A4.2), (3.33) are true, w is a (weak) solution of the equation

0 = ∆w + λw, x ∈ int Ω0.

Since λ /∈ σ(L0), we have w = 0 which contradicts (3.37) as before. This concludes the
proof.

In the following theorem we derive conditions guaranteeing blow-up of energy for
every non-global solution of (3.1) (cf. also the corresponding result in [31]). These
conditions will be similar as those appearing in Theorems 3.2 and 3.6 but the condition
(3.28) in Theorem 3.6 will become superfluous. In particular, the resulting conditions
are also weaker than those in Theorems 3.2 and 3.7.
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Theorem 3.8. Assume (3.4) with p ∈ (1, p∗1) and (3.5). Let u be a solution of (3.1)
which blows up in a finite time T in the H1(Ω)-norm. Then Φ(u(t)) → −∞ as t→ T−.

Proof. By D we will denote a generic constant which may depend on u0. Assume on the
contrary that Φ(u(t)) ≥ −D for every t < T . Then

(3.40)

∫ T

0

∫
Ω

u2
t dx dt ≤ D,

and Gronwall’s inequality easily implies

(3.41)

∫
Ω

u2(x, t) dx ≤ D for every t ∈ [0, T ).

In the same way as in the proof of Theorems 3.2 we obtain now a bound for ‖u(t)‖1,2,
t ∈ [0, T ), which contradicts our assumptions.

Remark 3.9. Assume (3.32). If we only considered positive solutions of (3.1) then under
suitable assumptions on the function a we could derive uniform a priori bounds for global
solutions with bounded energy (and energy blow-up for non-global solutions) for every
p < pS. In fact, one has just to modify the proof of [31, Theorem 4.2] (cf. also [5,13,19,21],
where the same ideas are used in order to prove a priori bounds for positive stationary
solutions of (3.1)).

In what follows we will assume (3.32) and we denote

Ω+
ε := {x ∈ Ω : a(x) > ε},

Ω0
ε := {x ∈ Ω : a(x) = ε},

Ω−
ε := {x ∈ Ω : a(x) < ε}.

Lemma 3.10. Assume (3.32), (A1), (A2), a ∈ C(Ω) and let the estimate in (A3) be
true for some p > 1. Let u0 ∈ E ∩ L∞(Ω), |u0| ≤ K, ε > 0, and let T denote the
maximal existence time of the solution u = u(x, t;u0). Then there exists a positive
constant C = C(K, ε) such that |u(x, t)| ≤ C for every x ∈ Ω−

−ε and every t ∈ [0, T ).

Proof. Fix C1 > 0 such that

g(u) ≥ 1

2
up ≥ 4

ε

(
|λ|u+ |h(x, u)|) for every x ∈ Ω, u ≥ C1.

Then

f(x, u) = λu+ a(x)g(u) + h(x, u) ≤ −ε
8
up for every x ∈ Ω−

−ε/2, u ≥ C1.

Consider δ > 0 small such that

|a(x)− a(y)| ≤ ε/2 if |x− y| ≤ δ
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and choose x0 ∈ Ω−
−ε. Then

Ωδ(x0) := {x ∈ Ω : |x− x0| < δ} ⊂ Ω−
−ε/2.

Let Bδ := {x ∈ RN : |x| < δ} and let w = wδ be the unique positive solution of the
singular elliptic problem

∆w =
ε

8
wp in Bδ, w = ∞ on ∂Bδ,

see [33]. Then wδ(0) = infBδ
wδ → ∞ as δ → 0+. Fix δ > 0 such that wδ(0) ≥

max{C1, K}. Then the restriction of wδ(x − x0) to the set Ωδ(x0) is a supersolution
for the corresponding restriction of u(x, t), hence u(x0, t) ≤ wδ(0) for every t ∈ [0, T ).
Since x0 ∈ Ω−

−ε was arbitrary, we obtain a uniform upper bound for u in Ω−
−ε. The lower

bound can be obtained in an analogous way.

Lemma 3.11. Assume (3.32) and (A1)–(A4). Let εk, δk → 0 and let wk, k = 1, 2, . . . ,
be solutions of{

−∆w = (λ− δk)w + (a(x)− εk)g(w) + h(x,w), x ∈ Ω,

w = 0, x ∈ ∂Ω.

Assume that Φk(wk) < C for some C > 0, where

Φk(w) := Φ(w) +
δk
2

∫
Ω

w2 dx+ εk

∫
Ω

G(w) dx.

Then the sequence (wk) is bounded in E.

Proof. Assume on the contrary that (for a subsequence) ‖wk‖1,2 → ∞ as k → ∞.
Multiplying the equation

−∆wk = (λ− δk)wk + (a(x)− εk)g(wk) + h(x,wk)

by wk, integrating over Ω and using Φk(wk) < C we arrive at∫
Ω

(
(a− εk)g(wk)wk + h(x,wk)wk

)
dx =

∫
Ω

(|∇wk|2 − (λ− δk)w
2
k) dx

< 2
(
C +

∫
Ω

(
(a− εk)G(wk) +H(x,wk)

)
dx

)
.

As a consequence of (A3) we obtain

(3.42) g(s)s− 2G(s) =
p− 1

p+ 1
|s|p+1 +O(s2), |s| → ∞,

hence the above estimate implies both

p− 1

p+ 1

∫
Ω

(a− εk)|wk|p+1 dx ≤ C
(
1 +

∫
Ω

w2
k dx

)
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and

(3.43)

∫
Ω

|∇wk|2 dx ≤ C
(
1 +

∫
Ω

w2
k dx

)
.

Setting vk := wk/‖wk‖1,2 we may assume that vk → v weakly in E and strongly in
Lp+1(Ω). As in the proof of Theorem 3.7 we obtain

∫
Ω
αa|v|p+1 dx = 0 and derive a

contradiction.

In the following proposition we will assume that there exist εk > 0, εk → 0 as k →∞,
such that

(3.44) meas Ω0
εk

= 0, k = 1, 2, . . . , and meas Ω0 = 0.

Notice that this assumption is trivially satisfied if (A6) holds.

Proposition 3.12. Assume (3.32), (A1)–(A3) and (3.44). Assume moreover that a ∈
C(Ω). Let K ⊂ E be compact,

(3.45) Φ(u0) < 0 and u(t, u0) be unbounded for every u0 ∈ K.

Choose M ≥ 0. Then there is a continuous map η : [0, 1]×K → Φ0 r {0} such that

(3.46) η(0, u) = u, η(1, K) ⊂ H1
0 (Ω+) ∩ Φ−M .

Proof. First let us prove that for k large enough,

(3.47) Φεk
(u0) < 0 and uεk

(t;u0) is unbounded for every u0 ∈ K,

where

Φε(u) := Φ(u) + ε

∫
Ω

G(u) dx,

and uε(t;u0) denotes the solution of the problem

(3.48)


ut −∆u = λu+ (a(x)− ε)g(u) + h(x, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In fact, since supK Φ < 0 and K is bounded, we have supK Φεk
< 0 if k is large enough.

In order to prove the unboundedness of uεk
(t;u0), assume on the contrary that there exist

u0,k ∈ K such that the solutions uk(t) := uεk
(t;u0,k) are global and bounded. Then the

ω-limit set of uk is a nonempty set consisting of equilibria. Pick up wk in this set. Since
Φεk

(wk) < 0, Lemma 3.11 guarantees that the sequence (wk) is bounded in E. Therefore,
Φεk

(uk(t)) ≥ Φεk
(wk) ≥ −CΦ for some CΦ > 0. Now a straightforward modification of

the proofs in Theorems 3.7 and 3.2 guarantees that there exists a constant C∗ > 0 such
that

‖uk(t)‖1,2 ≤ C∗ for every k and every t ≥ 0.
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We may assume that u0,k → u0 ∈ K. The continuous dependence of the solutions of
(3.1) and (3.48) on the initial data and on ε implies

‖u(t;u0)‖1,2 ≤ C∗

which contradicts our assumptions. Hence, (3.47) is true.
Notice that

(Φ− Φεk
)(u) = −εk

∫
Ω

G(u) dx ≤ εkC(G, p)

where the constant C(G, p) does not depend on u, hence

(3.49) Φ(u) < Φεk
(u) + min{1,− sup

K
Φεk

} for every u ∈ E

if k is large enough.
Fix k such that (3.49) and (3.47) are true and set ε := εk. Let D be a large

positive constant to be specified later, D > − infK Φε. Choose u0 ∈ K. If the solution
uε(t) := uε(t;u0) blows up in a finite time T then Φε(uε(t)) → −∞ as t → T− due to
Theorem 3.8. If this solution exists globally then its unboundedness implies Φε(uε(t)) →
−∞ as t → ∞ due to Theorems 3.7 and 3.2. Hence, in any case there exists tε(u0) =
tε(u0, D) ∈ (0,∞) such that

Φε(uε(tε(u0))) = −D.

Since t 7→ Φε(uε(t)) is strictly decreasing, the mapping tε : K → (0,∞) : u0 7→ tε(u0) is
continuous. Notice also that (3.49) implies

Φ(uε(t)) < Φε(uε(t))− sup
K

Φε ≤ 0.

Set T := maxK tε and define the continuous map

η : [0, 1/2]×K → Φ0 r {0} : (s, u0) 7→

{
uε(2Ts;u0) if 2Ts ≤ tε(u0),

uε(tε(u0);u0) if 2Ts > tε(u0).

Since K is bounded in E, it is easy to find τ > 0 small (τ < minK tε) such that the
set {uε(τ ;u0) : u0 ∈ K} is bounded in C(Ω). Now Lemma 3.10 (used with a and
ε replaced by a − ε and ε/2, respectively) guarantees that there exists C1 > 0 such
that |uε(t;u0)| ≤ C1 in Ω−

ε/2 for every t ∈ [τ, tε(u0)] and every u0 ∈ K. Consequently,

|η(s, u0)| ≤ C1 in Ω−
ε/2 for every s ∈ [τ/(2T ), 1/2] and standard parabolic regularity

estimates imply

(3.50) ‖η(1/2, u0)‖C1(Ω−
ε/4

)
≤ C2.

Notice that Φε(η(1/2, u0)) = −D and Φ ≤ Φε + 1 imply

Φ(η(1/2, u0)) ≤ −D + 1.
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Let ψ : Ω → R be a smooth cut-off function, suppψ ⊂ Ω+, ψ ≡ 1 on Ω+
ε/5. Then

η(s, u0) := 2(1− s)η(1/2, u0) + (2s− 1)ψη(1/2, u0), s ∈ (1/2, 1],

is a continuous map, η(1, u0) ∈ H1
0 (Ω+), and using (3.50) we obtain

Φ(η(s, u0)) ≤ Φ(η(1/2, u0)) + C(C2, ψ) ≤ −D + 1 + C(C2, ψ) < −M

for every s ∈ (1/2, 1], provided D is sufficiently large. This concludes the proof.

In [42], the existence of nontrivial equilibria of (3.1) is proved for f(x, u) = λu +
a(x)g(u) under some assumptions on a, g which are different from those in (A1) and
(A3). In particular, those assumptions allow the difference between g(u) and |u|p−1u
to grow faster than linearly so that the superlinearity assumption (3.5) need not be
true. We will show that Theorems 3.2, 3.7, 3.8, Lemma 3.11 and Proposition 3.12
remain true (with minor modifications) if we replace (A3) with (A8). Notice that this
new assumption enables superlinear perturbations of the power function |u|p−1u. In
fact the condition g(u)/(|u|p−1u) → C as |u| → ∞ in (A8) is even weaker than the
corresponding hypothesis [42, (H5)]. Note also that the requirement a 6= 0 on ∂Ω in
(A8) can be weakened to similar conditions as in [42, (H1)–(H2)]. On the other hand,
we have to assume that p < p∗2, where

(3.51) p∗2 :=



N + 3

N − 1
if N ≤ 3,

8

3
if N = 4,

p∗ if N > 4,

and p∗ is defined in (3.2).

Theorem 3.13. Assume (3.32), (A1), (A2) and (A8).

(a) Given η > 0 there exists C = C(η) such that (3.11) is true for all solutions u
satisfying (3.6) and (3.7).

(b) Let u be a solution of (3.1) which blows up in a finite time T in the H1(Ω)-norm.
Then Φ(u(t)) → −∞ as t→ T−.

(c) Let K ⊂ E be compact and assume (3.45). Choose M ≥ 0. Then there is a
continuous map η : [0, 1]×K → Φ0 r {0} such that (3.46) is true.

Proof. (a) First let us show that (3.6) and (3.7) imply (3.8) (cf. Theorem 3.7). In fact,
arguing by contradiction, as in the proof of Theorem 3.7 we obtain sk > 0 and solutions
uk(x) = uk(x, sk) of the problems

−∆uk = a(x)g(uk) + hk(x), x ∈ Ω,

uk = 0, x ∈ ∂Ω,
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where hk(x) := λuk(x, sk) + h(x, uk(x, sk))− ∂tuk(x, sk) satisfy∫
Ω

h2
k dx ≤ C

(
1 +

∫
Ω

u2
k dx

)
,

and the sequence (uk) is unbounded in L2(Ω). Now one can repeat all estimates in [42,
Section 2] (with gk := g and with an obvious estimate of the additional term hk) in order
to obtain a contradiction. Consequently, (3.8) is true.

Next we prove the estimate

(3.52)

∫ t+η

t

∫
Ω

|∇u|2 dx dt ≤ C1 for every t ≥ 0.

Assume on the contrary that ∫ tk+η

tk

∫
Ω

|∇uk|2 dx dt→∞

where uk(x, t) = u(x, t;u0,k) are global solutions satisfying |Φ(u0,k)| ≤ C and
Φ(uk(·, t)) ≥ −C. Notice that (3.8) and (3.10) (with u replaced by uk) are true. Repeat-
ing the estimates in [42, Section 2] (with all quantities integrated over the time intervals
(tk, tk + η)) we obtain a contradiction. Consequently, (3.52) is true.

Now we will proceed as in the proof of Theorem 3.2, starting with (3.14) replaced
by (3.52). As in that proof, we may assume that ‖u0‖1,2 ≤ C. Bounds (3.52) and (3.10)
imply a uniform bound for u(t) in Lr(Ω) whenever r < 2N/(N − 1), hence a bound in
H1(Ω) if p < (N + 3)/(N − 1). If p ≥ (N + 3)/(N − 1) (and N > 3) then we can repeat
word by word the bootstrap argument in the proof of Theorem 3.2.

(b) Let u blow up at time T < ∞. Assume on the contrary that Φ(u(t)) ≥ −D for
every t < T . As in the proof of Theorem 3.8 we obtain (3.40) and (3.41). Fix η > 0 and
assume that ∫ tk+η

tk

∫
Ω

|∇u|2 dx dt→∞ as k →∞,

where tk < T − η. Then we obtain a contradiction in the same way as in the proof of
(a). Hence (3.52) is true for t ≤ T − η and the same arguments as in (a) guarantee a
uniform bound for ‖u(t)‖1,2, t < T , which yields a contradiction.

(c) We will mimic the proof of Proposition 3.12. In fact, in that proof we just have
to notice that Lemma 3.11 remains true due to the estimates in [42, Section 2] (notice
that the estimate (3.42) need not be true now).

Proposition 3.14. Assume (3.32), (A1), (A2), (A4), a ∈ C(Ω) and let the estimate in
(A3) be true for some p ∈ (1, pS). Fix ε > 0. Then, given η > 0, there exists C = C(η, ε)
such that

(3.53) ‖u(t)|Ω+
ε
‖∞ ≤ C for all t > 2η,

for all solutions u satisfying (3.6) and (3.7).
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Proof. The proof is an easy modification of the local estimates in [24]. In fact, choose
a finite sequence 0 < ε1 < ε2 < · · · < εk+1 < ε, where k is the number of steps in the
bootstrap procedure in [24] (this number depends only on p and N). Set Ωi := Ω+

εi
,

i = 1, 2, . . . , k + 1, and choose smooth cut-off functions ψi with support in Ωi such that
ψi ≡ 1 in Ωi+1, i = 1, 2, . . . , k. Define the local energies

Φi(u) :=
1

2

∫
Ω

(
|∇(ψiu)|2 − |∇ψi|2u2

)
dx−

∫
Ω

ψ2
i F (x, u) dx,

Φ̃i(u) :=
1

2

∫
Ω

ψ2
i |∇u|2 dx−

∫
Ω

ψ2
i F (x, u) dx.

As in [24] one can prove that Φ(u(t)), Φ̃i(u(t)) are uniformly bounded for t > η. Then
one can use the same arguments as in [24] (cf. also [39] or [40]) in order to show that
the estimate

(3.54)

∫ s+1

s

‖u(t)|Ωi
‖2q

H1(Ωi)
dt ≤ Cq for all s > η,

guarantees ∫ s+1

s

‖u(t)|Ωi+1
‖2q̃

H1(Ωi+1) dt ≤ Cq̃ for all s > η,

where q̃ < q + 2
p+1

. Since (3.54) is true for i = 1 and q = 2 (see (3.14) in the proof of

Theorem 3.2), we obtain (3.54) with i = k and q large. More precisely, q is large enough
to guarantee that interpolation between that estimate and∫ s+1

s

‖ut(t)|Ωk
‖2

L2(Ωk) ≤ C

implies a uniform bound for u(t)|Ωk
in Lp+1(Ωk). Now the boundedness of the energy

Φ̃k(u(t)) implies a bound for u(t)|Ωk+1
in H1(Ωk+1). Finally, standard interior parabolic

estimates guarantee (3.53).

Corollary 3.15. Assume (3.32), (A1), (A2), (A4), a ∈ C(Ω) and let the estimate in
(A3) be true for some p ∈ (1, pS). Let Ω := BR(0) be the ball with center in the origin
and radius R. Let a and h(·, u) be radially symmetric, a(0) 6= 0.

(a) Given η > 0 there exists C = C(η) such that (3.11) is true for all radial solutions
u satisfying (3.6) and (3.7).

(b) Let u be a radial solution of (3.1) which blows up in a finite time T in the
H1(Ω)-norm. Then Φ(u(t)) → −∞ as t→ T−.

(c) Assume (3.44). Let K ⊂ E be compact, consist of radial functions and assume
(3.45). Choose M ≥ 0. Then there is a continuous map η : [0, 1]×K → Φ0r{0}
such that (3.46) is true and η(t, u) is radial for all (t, u) ∈ [0, 1]×K.
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Proof. It is sufficient to prove assertion (a) since the remaining assertions can be obtained
by a straightforward modification of the proofs of Theorem 3.8 and Proposition 3.12.

If a(0) < 0 then we obtain a uniform L∞ bound for u(t), t > η, in a small ball Bε(0)
from Lemma 3.10. If a(0) > 0 then the same bound follows from Proposition 3.14.
Proceeding as in the proof of Theorem 3.2 and using the fact that u(x, t) = U(|x|, t),
estimates (3.14) and (3.10) imply∫ t+η

t

(∫ R

ε

U2
r dr

)2

dt+

∫ t+η

t

∫ R

ε

U2
t dr dt ≤ C,

and interpolation yields a uniform L∞ bound for U(t) in BR(0) r Bε(0) (see [40]).
Consequently, u(t) is bounded in L∞(Ω). Now the assertion is obvious.

In the following theorem we show that the exponent p∗1 in Theorem 3.2 can be
increased if N = 2, provided f has the form (3.32) and a satisfies some additional
assumptions. In the subsequent remark we indicate how one can use that result in
order to prove the existence of nodal equilibria of (3.1) even if a does not satisfy those
additional assumptions.

Theorem 3.16. Let N = 2. Assume (3.32), (A1), (A2), (A4), a ∈ C(Ω) and let the
estimate in (A3) be true for some p ∈ (1, 5 + 4

√
2). Assume that dist(Ω+,Ω−) > 0 and

a
1/(p−1)
+ ∈ W 2,∞(Ω). Then, given η > 0, there exists C = C(η) such that (3.11) is true

for all solutions u satisfying (3.6) and (3.7).

Proof. Let u satisfy (3.6) and (3.7). The estimates in Theorems 3.2, 3.6 and 3.7 guarantee
a uniform bound for u(t) in L2(Ω) and for ∇u in L4((t, t+ η), L2(Ω)), t > η.

Denote g1(u) := g(u) − |u|p−1u, b(x) := a+(x)1/(p−1) and v := bu. Multiplying the
equation in (3.1) by b we see that v solves the problem

vt −∆v = |v|p−1v + w, x ∈ Ω, t > 0,

v = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = b(x)u0(x), x ∈ Ω,

where w := bpg1(u) + bh(·, u) −∆b u − 2∇b · ∇u is bounded in L4((t, t + η), L2(Ω)) for
t > η. Using the estimates in [6, Theorem 4.1] we get a uniform bound for v(t) in L∞(Ω)
for all t > 2η (notice that the hypotheses of that theorem require p < 5 + 4

√
2).

Set Ω1 := int(Ω+ ∪ Ω0). Then u solves the problem{
ut −∆u = |v|p−1u+ w1, x ∈ Ω1, t > 0,

u = 0, x ∈ ∂Ω ∩ ∂Ω1, t > 0,

where v(t)|Ω1 is bounded in L∞(Ω1) for t > 2η and u(t)|Ω1 , w1(t) are bounded in L2(Ω1)
for t > η. Since N = 2, parabolic estimates guarantee an L∞ bound for u(t)|Ω+ for all
t > 3η. Here we use the fact that dist(Ω+,Ω−) > 0.
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Set Ω2 := int(Ω− ∪ Ω0). Then u solves the problem{
ut −∆u = a(x)|u|p−1u+ w2, x ∈ Ω2, t > 0,

u = 0, x ∈ ∂Ω ∩ ∂Ω2, t > 0,

where a(x) ≤ 0 for x ∈ Ω2, u(t)|Ω2 , w2(t) are bounded in L2(Ω2) for t > η and u(x, t)
is bounded for x ∈ ∂Ω2 \ ∂Ω and t > 3η due to the estimate of u(t)|Ω+ . The maximum
principle and parabolic estimates yield an L∞ bound for u(t)|Ω2 for all t > 4η. Conse-
quently, u(t) is bounded in L∞(Ω) for t > 4η. Finally, the estimate (3.11) (for t > 5η)
follows by standard arguments.

Remark 3.17. Let, for example, a satisfy (A6), ak, k = 1, 2, . . . , satisfy the assumptions
of Theorem 3.16 and ak → a in C(Ω). Assume for simplicity that λ < λ1. Then one can
use the arguments in Section 5 in order to find nodal equilibria wk (corresponding to
ak) such that wk connects to zero, k = 1, 2, . . . . In addition, the corresponding energies
Φk(wk) remain bounded since we can find the equilibria wk in the ω-limit sets of initial
data u0,k which are uniformly bounded in H1(Ω), hence

(3.55) C ≥ Φk(u0,k) ≥ Φk(wk) ≥ Φk(0) = 0.

Now similarly as in the proof of Lemma 3.11 (cf. also [42]) we obtain the boundedness
of (wk), hence one can pass to the limit in order to see that w := limk wk is a nodal
equilibrium of the limiting problem (to prove that w is nodal it is sufficient to use the fact
that the zero solution is an isolated equilibrium for every subdomain of Ω). However,
the existence of a connection from w to the zero solution does not seem to be clear.

4. Signed Equilibria

This section is devoted to the existence of signed equilibria.
Let us start with stating some facts about the general equation (3.1), assuming only

f ∈ FS. Consider also the related stationary problem

(4.1)

{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω .

A supersolution (subsolution) u of (4.1) is, by definition, a function in u ∈ W 2,1(Ω) ∩
C1(Ω) satisfying −∆u ≥ f(x, u) (−∆u ≤ f(x, u)) for a.e. x ∈ Ω and u(x) ≥ 0 (u(x) ≤ 0)
for x ∈ ∂Ω. A strict supersolution (subsolution) of (4.1) is a supersolution (subsolution)
of (4.1) that is not a solution of (4.1). The comparison principle yields that the solution
u(t) of (3.1) satisfies u(t) ≤ u whenever u0 ≤ u and u is a supersolution of (4.1) (an
analogous assertion is true for the subsolution). Moreover, the following lemma can be
proved by standard methods.
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Lemma 4.1. Let f ∈ FS. Suppose that u is a strict supersolution of (4.1), that u is a
strict subsolution of (4.1), and that u ≤ u. Let

[u, u] := {u ∈ E : u ≤ u ≤ u}

denote the order interval in E. Then the following hold:

(a) Every semiorbit starting in [u, u] is a global semiorbit.

(b) For all t > 0 the set O+(ϕt([u, u])) is relatively compact.

(c) Φ is bounded below on [u, u] and attains its minimum at an equilibrium in [u, u].

(d) The interval [u, u] is strictly positive invariant in the following sense: For all
u ∈ [u, u] and t > 0 it holds that ϕt(u) ∈ intX([u, u] ∩X).

(e) For all t > 0 there is an open neighborhood U of [u, u] in E such that ϕt(u) ∈
[u, u] for all u ∈ U .

(f) The set A([u, u]) is open.

In what follows, for an open subset V of RN denote by λ1(V ) the first eigenvalue
of −∆ in H1

0 (V ), and by e1(V ) the corresponding positive eigenfunction, normalized by
supV e1(V ) = 1. We now specialize to nonlinearities f having the structure

f(x, u) = λu+ a(x)g(u) + h(x, u).

Lemma 4.2. Assume (A1) and (A5). For every λ > λ1 there is ε0 > 0 such that εe1(Ω)
is a strict subsolution and −εe1(Ω) is a strict supersolution of (Eλ) for all ε in (0, ε0].

Proof. As (A1) and (A5) are satisfied, there exists δ > 0 such that

∀x ∈ Ω,∀|u| < δ : (λ− λ1)|u| ≥ |a(x)||g(u)|+ |h(x, u)|.

It is enough to choose ε0 < δ.

Lemma 4.3. Suppose that (A1), (A2) and (A5) hold, and g fulfills either (A3) or the
condition in (A8). Then the sets Λ+ and Λ− are bounded above.

Proof. We prove the lemma only for Λ+, the proof for Λ− being similar. As Ω+ is a
nonempty open set, there exist x ∈ Ω+ and ρ > 0 such that U := {y : |y−x| < ρ} ⊂ Ω+.

Let λ ∈ Λ+ and u be the corresponding positive solution of (Eλ). Testing (Eλ) with
e1(U) we obtain∫

U

(
λue1(U) + ag(u)e1(U) + h(x, u)e1(U)

)
dx =

∫
U

∇u∇e1(U) dx

= −
∫

U

u∆e1(U) dx+

∫
∂U

u
∂e1(U)

∂ν
dS.
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As u > 0 and ∂e1(U)/∂ν < 0 on ∂U we get

(λ− λ1(U))

∫
U

ue1(U) dx ≤ −
∫

U

(
ag(u)e1(U) + h(x, u)e1(U)

)
dx.

Using the fact that U ⊂ Ω+, (A5) and the assumptions on the growth of h and g,
we get the existence of M > 0 satisfying −a(x)g(w)− h(x,w) < Mw for all w ≥ 0 and
x ∈ U . From e1(U) > 0 and

∫
U
ue1(U) dx > 0 we obtain λ < M + λ1(U).

Remark 4.4. We will prove in Section 5 that (under suitable assumptions on a, g and h)
(−∞, λ+) ⊂ Λ+ and Λ+ = (−∞, λ+] if λ+ > λ1. Of course, similar assertions are true
for the set Λ−.

Remark 4.5. If h ≡ 0, q > 1, g(u)/uq → C > 0 as u→ 0+ and

(4.2)

∫
Ω

a(x)eq+1
1 (Ω) dx < 0

then a local bifurcation analysis at λ = λ1 shows that λ+ > λ1, see the proof of [3,
Lemma 2.3], for example. (If a is not Hölder continuous then one has to replace the
spaces C2,β

0 and C0,β in that proof with W 2,r ∩W 1,r
0 and Lr respectively, where r > 1

is large enough.) In some cases, the condition (4.2) is also necessary. More precisely,
if g(u) = |u|q−1u and λ1 ∈ Λ+ then the condition (4.2) has to be satisfied, see [3,
Lemma 1.3]. Again, similar assertions are true for the set Λ−.

Our next aim is to prove that λ± may be arbitrarily large.

Proposition 4.6. Assume that g ∈ C1(R,R), g ∈ FS, g
′(0) = 0, g > 0 for u > 0 small,

h = 0 in Ω×R, and λ > λ1. Then there exists a ∈ C∞(Ω) such that λ+ = λ+(a, g, h) > λ
and such that Ω+ and Ω− are nonempty open sets.

The function a can be constructed such that 0 is a regular value of a and a 6= 0 on
∂Ω. On the other hand, we can also achieve that dist(Ω+,Ω−) > 0 and condition (A4.2)
from (A4) is satisfied.

Proof. First we construct a ∈ C∞(Ω) with the required properties such that (Eλ) pos-
sesses a positive strict supersolution u ∈ C∞(Ω). More precisely, we construct a and u
such that

−∆u > λu+ ag(u) in Ω,(4.3)

u > 0 in Ω.(4.4)

Let x0 ∈ Ω and Bε(x0) := {x : |x − x0| < ε }. There exists ε0 ∈ (0, dist(x0, ∂Ω))
such that λ1(Bε(x0)) > 2λ for all ε ∈ (0, ε0]. We define Ω1 := Bε0(x0), Ω2 := Bε0/2(x0),
Ω3 := Bε0/3(x0) and functions ηi : Ω → [0, 1], i = 1, 2, such that ηi ∈ C∞(Ω) and

ηi(x)


= 0, x ∈ Ω r Ωi,

= 1, x ∈ Ωi+1,

∈ (0, 1) else.
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Let K > 0 be such that g(t) > 0 for t ∈ (0, 2K). Set

u = K(e1(Ω1)η1 + 1− η1) in Ω.

Obviously, u ∈ C∞(Ω), K ≥ u > 0 in Ω and

(4.5) −∆u− λu

{
= −Kλ in Ω r Ω1,
> Kλe1(Ω1) in Ω2.

In order to satisfy (4.3) it is enough to choose a ∈ C∞(Ω),

a <
−∆u− λu

g(u)
in Ω

as g(u) > 0 in Ω.
Due to (4.5) we obtain

α1 := min
Ω2

−∆u− λu

g(u)
> 0, α2 := min

Ω

−∆u− λu

g(u)
< 0.

Defining a := α2 + (α1 − α2)η2 − α1/2, we have a ∈ C∞(Ω), a 6= 0 on ∂Ω, a > 0 on Ω3

and a < 0 on Ω \ Ω2. It is clear that it is possible to choose η2 such that 0 is a regular
value of a or that (A4.2) from (A4) holds.

Observe that for ε > 0 small enough the function εe1(Ω) is a positive strict subsolu-
tion of (Eλ) by Lemma 4.2, and εe1(Ω) ≤ u due to (4.4). Now the claim follows applying
Lemma 4.1(c) to [εe1(Ω), u].

5. Equilibria and Connecting Orbits from A Priori Estimates

To have the a priori estimates of Section 3 at our disposal, throughout this section we
consider (Pλ) and assume (A1), (A2) and either (A8) or (A3) and (A4). In addition, we
assume (A5). As before, ϕ denotes the semiflow induced by (Pλ) on E.

For convenience denote

‖u‖ =

(∫
Ω

|∇u|2 dx
)1/2

,

and define Ψ: E → R by

Ψ(u) =

∫
Ω

(
a(x)G(u) +H(x, u)

)
dx

so

Φ(u) =
1

2
(‖u‖2 − λ‖u‖2

2)−Ψ(u) .

Moreover put
K := {u ∈ E r {0} : Φ′(u) = 0 } ,
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the set of nontrivial critical points of Φ.
If c ∈ R call (un) ⊂ E a (PS)c-sequence for Φ if Φ(un) → c and Φ′(un) → 0 as

n→∞. If every (PS)c-sequence is relatively compact we say that Φ satisfies the (PS)c-
condition. If Φ satisfies the (PS)c-condition for every c ∈ R then Φ is said to satisfy the
(PS)-condition.

Lemma 5.1. If (un) ⊂ H1
0 (Ω+) satisfies Φ(un) ≤ C and |Φ′(un)un| ≤ C‖un‖ then ‖un‖

remains bounded.

Proof. Suppose that (un) ⊂ H1
0 (Ω+) satisfies ‖un‖ → ∞. First of all Φ′(un)un =

O(‖un‖) yields

(5.1) Ψ′(un)un = ‖un‖2 +O(‖un‖+ ‖un‖2
2) .

Since g(u)u ≥ θG(u)− C for some θ > 2 and C > 0, we obtain

C ≥ Φ(un) =
1

2
(‖un‖2 − λ‖un‖2

2)−Ψ(un)

≥ 1

2
(‖un‖2 − λ‖un‖2

2)−
1

θ
Ψ′(un)un +O(‖un‖2

2) .

This estimate and (5.1) imply

(5.2) ‖un‖2 = O(‖un‖2
2) .

Furthermore (5.1) yields

(5.3)

∫
Ω+

a(x)|un|p+1 dx = O(‖un‖2) .

Set vn = un/‖un‖. We may assume that vn ⇀ v in H1
0 (Ω+), and hence that vn → v in

Lq(Ω+) for q ∈ [2, pS + 1). Now (5.3) implies that∫
Ω+

a(x)|v|p+1 dx = 0 ,

which together with a(x) > 0 on Ω+ yields v = 0. This in turn implies vn → 0 in L2(Ω),
in contradiction with (5.2).

Corollary 5.2. There is Cmin ≤ 0 such that Φ(u) ≥ Cmin for every u ∈ H1
0 (Ω+) with

Φ′(u)u = 0.

Corollary 5.3. The restriction of Φ to a closed subspace of H1
0 (Ω+) satisfies the (PS)-

condition.

Lemma 5.4. If Y is a finite dimensional subspace of H1
0 (Ω+) and u0 ∈ E then

lim
‖u‖→∞

u∈Y

Φ(u+ u0) = −∞ .
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Proof. Consider the weighted norm

‖u‖a =

(∫
Ω+

a(x)|u|p+1 dx

) 1
p+1

on H1
0 (Ω+). On Y it is equivalent with ‖·‖. The claim now follows since

Φ(u+ u0) ≤ −c‖u‖p+1
a +O(‖u‖2) as ‖u‖ → ∞

for u ∈ H1
0 (Ω+).

In the sequel we apply some of the results from [1]. Note that assumptions (F1),
(F2), (F4)–(F6) in that paper follow from our general assumptions in this section and
from the a priori estimates proved in Theorems 3.2, 3.7 and 3.8. Assumption (F3)
in [1] is not satisfied in general in the present setting. Nevertheless, the facts proved in
Lemmata 5.1 and 5.4 and in the Corollaries 5.2 and 5.3 are sufficient for the application
of the results from [1] as we will show. In addition, the a priori estimates from Section 3
and the compactness of ϕ imply the following:

If A ⊂ E is closed and inf Φ(A) > −∞ then every positive semiorbit
starting in A(A) exists for all positive times and is relatively compact.

Proposition 5.5. If λ < λ1 then there are a positive equilibrium u+ and a negative
equilibrium u− such that u± � 0.

Proof. The set A(0) is an open neighborhood of 0. Choose v0 ∈ H1
0 (Ω+) such that v0 > 0

and denote by V the span of {v0} in E. By Lemma 5.4 A(0) ∩ V is bounded. The rest
of the proof is the same as that of [1, Thm. 3.1] if one replaces E1 by V .

Proposition 5.6. If λ < λ2 then there is a nodal equilibrium u∗ such that u∗ � 0.

Proof. Put

W2 := {u ∈ E : T+(u) = ∞, lim sup
t→∞

‖ϕ(t, u)‖1/t
1,2 ≤ eλ−λ2 } .

In the terminology of [1] this is the second superstable manifold of ϕ at 0. It is a
C1-submanifold of E of codimension 1, tangent in 0 to the generalized eigenspace Z
of L corresponding to the spectral set σ(L) ∩ (λ1,∞). Choose linearly independent
v1, v2 ∈ H1

0 (Ω+) such that v1 > 0. Denote by V1 the span of {v1} and by V2 the span
of {v1, v2}. Note that E = V1 ⊕ Z. Denote by P the projection in E onto Z with
kernel V1. It follows as in the proof of [1, Thm. 2.6] that the restriction of P to W2 is
a diffeomorphism onto an open neighborhood of 0 in Z. By Lemma 5.4 the set Φ0 ∩ V2

is bounded. Replacing E−
3 by V2 and E2 by Z the proof can be finished following the

arguments in the proof of [1, Thm. 3.2a)].
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In the next existence result the local structure of the semiflow at 0 will play an
important rôle. Therefore recall that for λ ∈ R there exist local (strong) stable and
unstable C1-manifolds W s

loc and W u
loc at 0 with respect to ϕ. They are given as C1-graphs

over neighborhoods of 0 in the (strong) stable and unstable generalized eigenspaces Es

and Eu, the generalized eigenspaces of L corresponding to the spectral sets σ(L)∩(λ,∞)
and σ(L) ∩ [λ1, λ). Furthermore, they are contained in the global stable and unstable
sets W s and W u of 0:

W s := {u ∈ E : ϕ(t, u) → 0 as t→∞}
W u := {u ∈ E : ϕ(t, u) → 0 as t→ −∞} .

Proposition 5.7. Assume that (A6) holds.

(a) If λ ∈ R rσ(L) then there is a nontrivial equilibrium u∗ such that either u∗ � 0
or 0 � u∗.

(b) If λ ∈ σ(L) and if in addition (A7) holds then there is a nontrivial equilibrium
u∗ such that either u∗ � 0 or Φ(u∗) ≤ 0.

The equilibrium u∗ obtained in (a) and (b) above is nodal in the case u∗ � 0.

Proof. (a) Denote by P u and P s the projections in E onto Eu and Es, respectively. If
u ∈ E we write uu := P uu and us := P su. The local unstable and stable manifolds W u

loc

and W s
loc are given as the graphs of maps ξu ∈ C1(V u, Es) and ξs ∈ C1(V s, Eu), where

V u ⊂ Eu and V s ⊂ Es are open neighborhoods of 0. Moreover, ξu(0) = 0, ξ′u(0) = 0,
ξs(0) = 0, and ξ′s(0) = 0. Hence we may also assume that

(5.4) sup
v∈V u

‖ξ′u(v)‖ ≤
1

2
and sup

v∈V s

‖ξ′s(v)‖ ≤
1

2
.

Set Ξu(v) := v+ ξu(v) for v ∈ V u and Ξs(v) := v+ ξs(v) for v ∈ V s. The global unstable
and stable sets of 0 are then given by W u := O+(W u

loc) and W s := O−(W s
loc) respectively.

If Y is a subspace of E then we set

UrY := {u ∈ Y : ‖u‖ < r}, BrY := {u ∈ Y : ‖u‖ ≤ r}, SrY := {u ∈ Y : ‖u‖ = r}.

Choose r > 0 such that

BrE
u ⊂ V u and BrE

s ⊂ V s .

Set

Bs := Ξs(BrE
s) Ss := Ξs(SrE

s)

Bu := Ξu(BrE
u) Su := Ξu(SrE

u) .

It was shown in [1, Lemma 2.1] that

(5.5) Cs := inf Φ(Ss) > 0 .
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Put A := Φ0 r {0}. Since Φ(u) > 0 for u in W s r {0},

(5.6) Bs ∩ A = ∅ .

Clearly Φ(u) < 0 for every u in Su. If there is no u∗ ∈ K such that 0 � u∗ then O+(u)
is unbounded for every u ∈ Su (since every bounded positive semiorbit is global and
relatively compact). By Proposition 3.12 there is η1 ∈ C([0, 1]× Su, E) such that

η1(0, v) = v

K1 := η1(1,Su) ⊂ ΦCmin−2 ∩H1
0 (Ω+)

η1([0, 1]× Su) ⊂ A .

Since K1 is compact and Φ′ is bounded on bounded subsets we may find an approx-
imating finite dimensional subspace Y of H1

0 (Ω+) with the following property: If we de-
note by PY the orthogonal projection onto Y and if we define η2 ∈ C([0, 1]×K1, H

1
0 (Ω+))

by η2(t, v) := (1− t)v + tPY v, then

η2(0, v) = v

K2 := η2(1, K1) ⊂ ΦCmin−1(5.7)

η2([0, 1]×K1) ⊂ A .

Choose a finite dimensional subspace Z of H1
0 (Ω+), strictly including Y . By

Lemma 5.4 there is R ≥ 0 such that Φ(u) ≤ 0 for u in Z r BRZ. Denote
CR := min Φ(B2RY ). By Corollary 5.2 Φ|Y has no critical point in Y ∩ ΦCmin−1. More-
over, Corollary 5.3 ensures that Φ|Y satisfies the (PS)-condition. In view of (5.7) we can
therefore find a deformation η3 ∈ C([0, 1]×K2, Y ) such that

η3(0, v) = v

K3 := η3(1, K2) ⊂ ΦCR−1 ∩ Y ⊂ Y rB2RY(5.8)

η3([0, 1]×K2) ⊂ A .

We now fix v0 ∈ S2RZ∩Y ⊥ and define η4 ∈ C([0, 1]×K3, Z) by η4(t, v) := (1−t)v+tv0.
From the definition of R and from (5.8) we deduce that

η4(0, v) = v

η4(1, K3) = {v0}
η4([0, 1]×K3) ⊂ A .

The deformations constructed above can be combined and scaled to yield a deforma-
tion η ∈ C([0, 1]× Su, E) such that

η(0, v) = v(5.9)

η(1, v) = v0 ∈ A(5.10)

η([0, 1]× Su) ⊂ A .(5.11)

34



Define the sets

M := [0, 1]× Bu, M0 := [0, 1]× Su ∪ { 0, 1 } × Bu ,

the continuous map γ0 : M0 → E by

γ0(t, v) :=


η(t, v) v ∈ Su

v t = 0

v0 t = 1 ,

and the class of maps
Γ := { γ ∈ C(M,E) : γ|M0 = γ0 } .

We claim that M and Ss link, in the following sense:

(5.12) ∀γ ∈ Γ: γ(M) ∩ Ss 6= ∅ .

To see this fix γ ∈ Γ. Consider the open subset U := UrE
u + UrE

s of E and define
κi : [0, 1]× U → E for i = 1, 2 by

κ1(t, u) := us − uu + t(ξs(u
s)− ξu(u

u))

κ2(t, u) := Ξs(u
s)− γ(t,Ξu(u

u)) .

Using the fact that Eu is finite dimensional it is easy to see that

(5.13) (I − κi)([0, 1]× U) is compact for i = 1, 2.

We will show that the assumption

(5.14) γ(M) ∩ Ss = ∅

implies

(5.15) κi(t, u) 6= 0 for i = 1, 2, t ∈ [0, 1] and u ∈ ∂U

and

(5.16) κ2(1, u) 6= 0 for u ∈ U .

Hence, if (5.14) were true homotopy invariance of the Leray-Schauder degree, κ1(1, ·) =
κ2(0, ·), (5.13), (5.15) and (5.16) would imply

0 6= −1dim Eu

= deg(P s − P u, U, 0) = deg(κ1(0, ·), U, 0)

= deg(κ1(1, ·), U, 0) = deg(κ2(0, ·), U, 0) = deg(κ2(1, ·), U, 0) = 0 ,

a contradiction.
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To prove (5.12) it therefore remains to deduce (5.15) and (5.16) assuming (5.14). By
(5.6) and (5.10) v0 /∈ Bs. This proves (5.16) in view of the definition of κ2, γ and γ0. To
prove (5.15), always assume that t ∈ [0, 1]. If u ∈ SrE

u +BrE
s then

‖P uκ1(t, u)‖ = ‖−uu + tξs(u
s)‖ ≥ ‖uu‖ − ‖ξs(us)‖ ≥ r − r/2 > 0

due to (5.4) and ξs(0) = 0. Similarly it follows that κ1(t, u) 6= 0 if u ∈ BrE
u + SrE

s.
This proves (5.15) for κ1. If u ∈ SrE

u + BrE
s then γ(t,Ξu(u

u)) = η(t,Ξu(u
u)) ∈ A.

Hence κ2(t, u) 6= 0 follows from Φ(Ξs(u
s)) ≥ 0 and from the fact that Ξs(u

s) = 0 if
Φ(Ξs(u

s)) = 0. If u ∈ BrE
u +SrE

s then κ2(t, u) 6= 0 follows from the assumption (5.14).
This proves (5.15) for κ2 and finishes the proof of (5.12).

As in the proof of [1, Thm. 3.2b)] we now consider a global continuous semiflow
ϕ̃, which is just the semiflow ϕ “stopped” at the energy level 0. This is possible due
to Theorem 3.8. Starting with any fixed γ ∈ Γ observe that ϕ̃(t, γ(·)) ∈ Γ and hence
ϕ̃(t, γ(M)) ∩ Ss 6= ∅ for all t ≥ 0. Consider a sequence (tn) with tn → ∞ as n → ∞
and mn ∈M such that ϕ̃(tn, γ(mn)) ∈ Ss. Since

Φ(ϕ̃(tn, γ(mn))) ≥ Cs > 0

by (5.5) we see that ϕ̃(tn, γ(mn)) = ϕ(tn, γ(mn)). Moreover, it follows that

Φ(γ(mn)) ≥ Φ(ϕ(tn, γ(mn))) ≥ Cs > 0 .

Since M is compact, we may assume that mn → m with Φ(γ(m)) > 0. Setting u :=
γ(m), it is easy to see that this implies u ∈ W s rW s. The argument used in the proof
of [1, Thm 2.4c)] yields an equilibrium in W s rW s that connects to 0. Now [1, Thm. 2.5]
shows that W s r{0} consists entirely of sign changing functions. This finishes the proof.

(b) As in the proof of (a) denote by Es the generalized eigenspace of L corresponding
to the spectral set σ(L)∩(λ,∞) and by Ecu the generalized eigenspace of L corresponding
to the spectral set σ(L) ∩ [λ1, λ]. Define W s

loc, V
s, ξs ∈ C(V s, Ecu), and W s similarly as

before.
From condition (A7) it follows as in the proof of [30, Thm. 4] that Φ ≤ 0 on a

neighborhood of 0 in Ecu. We may thus choose r > 0 small enough such that defining
Bs and Ss as above, and setting

Bcu := BrE
cu and Scu := SrE

cu ,

it holds that
Φ(u) ≤ 0 for u ∈ Bcu .

Again, put A := Φ0 r {0}. Suppose that K ∩ Φ0 = ∅. Then min‖Φ′(Scu)‖H−1 > 0
since Scu is compact. The deformation lemma [45, Lemma 2.3] yields η0 ∈ C([0, 1] ×
Scu, A) such that setting K0 = η0(1,Scu) it holds that max Φ(K0) < 0. Moreover, since
by assumption ϕ has no equilibria with negative energy, O+(u) is unbounded for every
u ∈ K0. Replacing Su by K0 we can proceed exactly as in the proof of (a) to construct
a deformation η ∈ C([0, 1]×Scu, E) such that (5.9)–(5.11) are satisfied, and to show the
existence of a nodal u∗ ∈ K such that u∗ connects to 0.
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Remark 5.8. The method used in the preceding proof to construct a homotopical linking
at 0 goes back to S. Li. For more information and references see [30].

Proposition 5.9. (a) Let u be a strict positive supersolution of (Eλ), u ∈ E. Then
there exists a positive solution u∗ of (Eλ) such that u∗ 6≤ u.

(b) Let u be a strict negative subsolution of (Eλ), u ∈ E. Then there exists a
negative solution u∗ of (Eλ) such that u∗ 6≥ u.

Proof. We will only prove assertion (a) since the proof of (b) is analogous. Set

(5.17) D := {u0 ∈ E : 0 < ϕt(u0) < u for some t > 0}.

Notice that the positive semiorbit O+(u0) is global for every u0 ∈ D, since the order
interval [0, u] is positive invariant. In addition, the set D is open. In fact, let u0 ∈ D,
t0 ≥ 0 and 0 < ϕt0(u0) < u. If t1 > t0 then ϕt1(u0) and u− ϕt1(u0) belong to P0X due
to the maximum principle. Since

‖ϕt1(u1)− ϕt1(u0)‖X ≤ C‖u1 − u0‖E

for every u1 ∈ E close to u0 (where C = C(t1,max0≤t≤t1 ‖ϕt(u0)‖E)), we see that u1 ∈ D
if ‖u1 − u0‖E is small enough.

Fix ψ ∈ H1
0 (Ω+), ψ > 0, and set

α∗ := supA, where A := {α > 0 : u+ αψ ∈ D}.

Obviously u ∈ D, hence A is a nonempty open set. Since Φ is bounded below on [0, u]
and Φ(u + αψ) → −∞ as α → +∞ due to Lemma 5.4, we see that A is bounded,
α∗ ∈ (0,∞).

A priori estimates in Section 3 guarantee that the positive semiorbit O+(u+α∗ψ) is
global and bounded, hence its ω-limit set is nonempty and consists of equilibria. Choose
u∗ ∈ ω(u + α∗ψ). Then u∗ ≥ 0 due to the maximum principle. Assume that u∗ ≤ u.
Fix t > 0. Then

u∗ = ϕt(u∗) ≤ ϕt(u) � u,

which easily implies u+ α∗ψ ∈ D, a contradiction. Consequently, u∗ 6≤ u.

Corollary 5.10. We have (−∞, λ+) ⊂ Λ+. In addition, if λ+ > λ1 and either
meas(Ω0) = 0 or λ+ /∈ σ(L0) then λ+ ∈ Λ+.

Analogous assertions are true for λ−.

Proof. Let λ < λ+. Then there exists λ > λ such that (Eλ) possesses a positive solution
u. Since u is a strict positive supersolution for (Eλ), we have λ ∈ Λ+ by Proposition 5.9.

Now let λ := λ+ > λ1 (notice that (A4) is satisfied with this choice of λ). Consider
a sequence λ(k) ↗ λ+ with λ(1) > λ1. Let e1 be a positive eigenfunction corresponding
to the eigenvalue λ1 and let ε0 > 0 be small enough so that εe1 is a strict subsolution
of (Eλ(k)) for every ε ∈ (0, ε0) and every k. This guarantees that ε0e1 < w for every
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positive solution w of (Eλ(k)), k = 1, 2, . . . . The solution of (Pλ(k)) with the initial
data u0 := ε0e1 converges to the minimal positive solution wk of (Eλ(k)) and the energy
of wk (corresponding to the problem (Pλ(k))) is bounded above by the energy of u0.
Consequently, the sequence (wk) is bounded due to Lemma 3.11 (cf. also the proof of
Theorem 3.13(c)), hence compact. In addition, wk ≥ ε0e1. Thus we may assume that
wk → w, where w is a positive solution of (Pλ). This implies λ+ ∈ Λ+.

Corollary 5.11. If λ1 < λ < λ+ then there exist at least two positive solutions of (Eλ).
If λ1 < λ < λ− then there exist at least two negative solutions of (Eλ).

Proof. Let λ ∈ (λ1, λ
+). Fix λ ∈ (λ, λ+) and let u be any positive solution of (Eλ). Due

to Proposition 5.9 we can find a positive solution u∗ of (Eλ) with u∗ 6≤ u. On the other
hand, choosing u∗∗ ∈ ω(u) we see that u∗∗ is a positive solution of (Eλ) (since 0 /∈ ω(u)
due to λ > λ1) and u∗∗ < u, hence u∗∗ 6= u∗.

The proof of the existence of negative equilibria is analogous.

Proposition 5.12. Let λ ≤ λ+ and let u be any positive solution of (Eλ).

(a) If λ > λ1 then there exists a nodal solution u∗ of (Eλ) such that u∗ 6≤ u.

(b) If λ > λ2 then there exists a nodal solution u∗ of (Eλ) such that u∗ ≤ u and
0 � u∗.

Proof. (a) Define the set D by (5.17). Exactly as in the proof of Proposition 5.9 we can
prove that D is open in E. Fix ψ1, ψ2 ∈ H1

0 (Ω+) linearly independent, 0 < ψ1 < u, and
let V denote the span of {ψ1, ψ2}. Similarly as in the proof of Proposition 5.9 we obtain
that the set D ∩ V is bounded and the positive semiorbit O+(u0) is global and bounded
for every u0 ∈ M := ∂(D ∩ V ) (where the boundary is taken in the two-dimensional
space V ). Set

M+ := {u0 ∈M : u∗ > 0 for every u∗ ∈ ω(u0)},
M− := {u0 ∈M : u∗ < u for every u∗ ∈ ω(u0)}.

Let u0 ∈M , u∗ ∈ ω(u0) and u∗ < u. Assume that u∗ > 0. Then u� u∗ � 0 due to the
maximum principle, hence 0 < ϕt(u0) < u for some t > 0, thus u0 ∈ D. But u0 ∈ ∂D
and D is open, which yields a contradiction. Therefore, u∗ 6> 0 and M+ ∩M− = ∅.
Next assume that u∗ < 0. Then u∗ � 0 and one can find v0 ∈ D (close to u0 ∈ ∂D)
such that ϕt(v0) < 0 for some t > 0 which contradicts the definition of D. Hence u∗ 6< 0
and u∗ has to be either zero or a nodal function. Consequently, u /∈ ω(u0).

Now let u0 ∈ M , u∗ ∈ ω(u0) and u∗ > 0. Then the instability of zero implies
0 /∈ ω(u0). Using these facts it is easy to see that the word “every” in the definitions of
M+,M− can be replaced by “some”. Notice also that the sets M+,M− are relatively
open in M .

Next assume that M = M+∪M−. Fix ε ∈ (0, 1). Observe that εψ1 ∈ D∩V . We will
show that the topological degree deg(Id, D∩V, εψ1) equals zero, which yields an obvious
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contradiction. In fact, this assertion can be easily obtained by using the homotopies

h1(α, u) =

{
(1− α)u+ αψ1, u ∈M+,

(1− α)u− αψ1, u ∈M−,

h2(α, u) =

{
(1− α)ψ1 + αψ2, u ∈M+,

(1− α)(−ψ1) + αψ2, u ∈M−,

where α ∈ [0, 1]. Let us check that the homotopy h1 is admissible (the admissibility of
h2 is obvious). Assume on the contrary that h1(α, u) = εψ1 for some u ∈M . Obviously
α 6= 1. If u ∈ M+ then u = ψ1(ε − α)/(1 − α). Now the definition of M+ guarantees
ε > α and since 0 < (ε− α)/(1− α) < 1 we see that u ∈ D, a contradiction. If u ∈M−

then u = ψ1(ε + α)/(1 − α) > 0 and the instability of zero implies u∗ > 0 for every
u∗ ∈ ω(u), which contradicts the fact that M+ ∩M− = ∅.

Consequently, M 6= M+ ∪M− and we can fix u0 ∈ M \ (M+ ∪M−). Now every
u∗ ∈ ω(u0) is a nodal solution of (Eλ) satisfying u∗ 6≤ u.

(b) Let D be defined as above. Let us show that there exists u0 ∈ ∂D, u0 ≤ u, lying
in the unstable manifold W u

loc of the zero solution. In fact, since dim(W u
loc) ≥ 2, there

exists a continuous path γ : [−1, 1] → W u
loc \ {0} such that γ(−1) < 0, γ(1) > 0 and

γ(α) < u for every α ∈ [−1, 1]. Since γ(1) ∈ D and γ(−1) /∈ D, there exists α0 ∈ [−1, 1]
such that u0 := γ(α0) ∈ ∂D.

Now (similarly as in the proof of (a)) we see that the positive semiorbit O+(u0) is
global and bounded and ω(u0) consists of nodal equilibria (due to u0 < u and 0 /∈ ω(u0)).
Hence it is sufficient to choose u∗ ∈ ω(u0).

Proposition 5.13. If g and h are odd in u then there is a sequence (un) of nodal
equilibria such that Φ(un) →∞ as n→∞ and such that un � 0 for every n.

Proof. This can be proved in the same way as [1, Theorem 3.4]. There are two modi-
fications to be made: First, Y should be chosen as a subspace of H1

0 (Ω+) now so that
Lemma 5.4 can be used. Second, we do not assume (PS) for Φ in the present setting.
It needs to be shown: If A is a subset of K and Φ(A) is bounded then A is relatively
compact. But this follows here from Theorems 3.2 and 3.7, and from the compactness
of the semiflow.

6. Multiple Equilibria in an Order Interval

In this section we are concerned with the semiflow ϕ induced onX by the general problem
(3.1) in the presence of an attracting order interval. Since we are only interested in the
dynamics in the order interval we will not need the a priori estimates and hence no
additional growth restrictions or structural conditions on f . More precisely, we assume:

(6.1)
f ∈ FS, f : Ω × R → R is differentiable in u, fu is a Carathéodory
function, and f(x, u)− fu(x, 0)u = o(|u|) as |u| → 0, uniformly in x.
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In particular, 0 is an equilibrium of ϕ. We also assume that

(6.2)
there exist a strict subsolution u� 0 of (4.1) and a strict supersolution
u� 0 of (4.1) such that u, u ∈ X,

and we set C = [u, u] ⊂ X. Then C is closed because u, u ∈ X, and C has nonempty
interior in X.

We define the energy functional Φ as in Section 3, and we denote the set of nontrivial
critical points of Φ by K. Denote also by µ(0) the Morse index of 0 with respect to Φ.
We are interested in the case when

(6.3) µ(0) ≥ 2.

It is easy to see that at a critical point u of Φ the Morse index of u with respect to the
functional Φ (the dimension of the negative eigenspace of Φ′′(u)) and the dimension of
the negative eigenspace of the linearization −∆− fu(x, u(x)) of (4.1) at u are the same,
even though the negative eigenspaces need not coincide. The kernel of Φ′′(u) and of
−∆− fu(x, u(x)) always coincide.

Throughout this section we require (6.1), (6.2) and (6.3) to hold. By e1 we denote the
positive eigenfunction associated with the first eigenvalue of the operator −∆− fu(x, 0)
in H1

0 (Ω). Note that this eigenvalue is negative, hence the statement of Lemma 4.2 is
still valid. Therefore in the sequel we fix ε0 such that for all ε ∈ (0, ε0] the function εe1
is a strict subsolution and −εe1 is a strict supersolution of the stationary equation (4.1).
This implies, as we have noted in Section 5, that every positive solution u of (4.1)
satisfies u� ε0e1, and that every negative solution u of (4.1) satisfies u� −ε0e1.

Recall the properties of the semiflow on the order interval C = [u, u] given by
Lemma 4.1. In particular Φ is bounded below on C and ϕt restricts to a global semiflow
on C (that is, ϕt(u) is defined for all t ≥ 0 if u ∈ C). Lemma 4.1(b) implies that the
following compactness condition holds:

(6.4)
For every sequence (un) in C and every sequence tn → ∞ of real
numbers the set {ϕtn(un) : n ∈ N } ⊂ C is relatively compact.

Moreover, Lemma 4.1(d) implies that if u ∈ C is an equilibrium of ϕ then u ∈ intX C.
In particular, 0 ∈ intX C and hence W u(0) ⊂ C.

For ε ∈ (0, ε0] we introduce the order intervals C+
ε := [εe1, u] and C−

ε := [u,−εe1],
considered as subsets of X. By Lemma 4.1 they are strictly positive invariant. Let
S± := inv(C±

ε ) be the maximal invariant set. These sets are compact as a consequence of
(6.4), and they are not empty because they contain local minimizers u1 ∈ S+, u2 ∈ S−.
Observe also that there are connecting orbits from 0 to S+ and S−. More precisely
W u(0) ∩ P0X 6= ∅, and for u ∈ W u(0) ∩ P0X we have ω(u) ⊂ S+. Similarly, W u(0) ∩
(−P0X) 6= ∅ and ω(u) ⊂ S− for u ∈ W u(0) ∩ (−P0X).

In the sequel we will only consider the restriction of ϕ to C. In particular, for a
closed subset of C the corresponding set of attraction is taken in C. We want to show
that there are at least two nodal stationary solutions in C, that is, stationary solutions
u3, u4 ∈ C r (PX ∪ (−PX)), and we want to find connecting orbits between these
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solutions and 0, S+, S−. To this end, define A(S±) and ∂A(S±) as in Section 2.1, but
here for the restriction of ϕ to C. Hence ∂A(S±) denotes the boundary of A(S±) relative
to C. Observe that

(6.5) (±PX ∩ C) r {0} ⊂ A(S±) and 0 ∈ ∂A(S+) ∩ ∂A(S−) .

Note moreover that

(6.6) A(S±) is open in C and ∂A(S±) ⊆ C rA(S±) .

We show this for A(S+): Since A(S+) is a neighborhood of S+ by (6.5) A(S+) is open
in C. Now suppose that u ∈ ∂A(S+). Clearly A(S+) ∩ (u − PX) = ∅ since otherwise
ϕt(u) ∈ (PX ∩ C) r {0} ⊆ A(S+) for large t. If u ∈ intX C there is

(un) ⊆ intX(u− PX) ∩ C ⊆ C rA(S+)

such that un → u as n → ∞. If u ∈ ∂XC then ϕt(u) ∈ intX C ∩ ∂A(S+) for t > 0. As
above for every t > 0 there exists a sequence

(un) ⊆ intX(ϕt(u)− PX) ∩ C ⊆ C rA(S+)

such that un → ϕt(u) as n→∞. From this we can build (un) ⊆ C rA(S+) such that
un → u.

Lemma 6.1. ∂W u(0) ∩ ∂A(S±) 6= ∅.

Proof. This can be proved with similar arguments as those used already in the proof
of Proposition 5.12. Only note that instead of assuming the a priori estimates from
Section 3 here compactness follows since we are working inside the order interval C.

Applying the compactness condition (6.4) once more and using the fact that ∂W u(0)
and ∂A(S±) are positive invariant we may minimize Φ on each of the four sets ∂A(S±),
∂A(S±) ∩ ∂W u(0) and obtain equilibria in ∂A(S±) and ∂A(S±) ∩ ∂W u(0). Since every
equilibrium in ∂W u(0) has negative energy, these minimizers are nontrivial, and by (6.5)
they are also nodal. However, they may coincide.

Remark 6.2. Let u3 be a (local) minimizer of Φ on ∂A(S+) which is also an isolated
equilibrium. We shall show that λ1(−∆−fu(x, u3)) ≤ 0 ≤ λ2(−∆−fu(x, u3)). First note
that u3 ∈ intX C. We claim that there exists δ > 0 such that Bδ(u3)∩∂A(S+) ⊂ W cs(u3).
Here Bδ(u3) := {u : ‖u − u3‖ < δ} and a center-stable manifold W cs(u3) is defined as
in [12]. (The construction in [12] yields a center-stable manifold in W 1,q which we may
intersect with X to have a center-stable manifold in X.) In order to see this choose ρ > 0
so that there are no other equilibria in Bρ(u3) except u3, and so that ϕt(u) leaves Bρ(u3)

in positive time for every u ∈ Bρ(u3)\W cs(u3) . This is property (P3) of the center-stable
manifold from [12]. Assume by contradiction that there exists vn ∈ ∂A(S+) \W cs(u3)
with vn → u3 as n→∞. Then there exists tn > 0 with ‖ϕtn(vn)− u3‖ = ρ. Clearly

lim
n→∞

Φ(ϕtn(vn)) = lim
n→∞

Φ(vn) = Φ(u3)
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because u3 is a minimizer of Φ on ∂A(S+) and because ∂A(S+) is positive invariant. Con-
sequently there exists sn ∈ [0, tn] with ‖ϕsn(vn)−u3‖ ∈ [ρ/2, ρ] and d

dt
Φ(ϕt(vn))|t=sn → 0.

This implies sn → ∞ and ϕsn(vn) → v along a subsequence by (6.4). It follows that v
is an equilibrium and ‖v − u3‖ ∈ [ρ/2, ρ], contradicting the choice of ρ.

Next we claim that the Morse index of u3 is at most 1. In order to see this suppose
that W cs(u3) has codimension at least 2. Using (6.6) it follows that there exists a path
γ : [0, 1] → Bδ(u3) r W cs(u3) with γ(0) ∈ A(S+) and γ(1) /∈ A(S+). Hence there is
s > 0 with γ(s) ∈ Bδ(u3) ∩ ∂A(S+) ⊂ W cs(u3), a contradiction.

It is not possible that u3 is a strict local minimum for Φ. Assume to the contrary
that there exists δ > 0 with Φ(u) > Φ(u3) for u ∈ Bδ(u3) r {u3}. We assume that
Bδ(u3) ∩ S+ = ∅ and choose a sequence vn ∈ Bδ/2(u3) ∩ A(S+) converging towards u3.
From vn ∈ A(S+) it follows that there exist tn > 0 with ‖ϕtn(vn)− u3‖ = δ/2. Clearly
tn → ∞ because vn → u3, and u3 is an equilibrium. By (6.4) we may assume that
ϕtn(vn) → v ∈ Bδ(u3) r {u3} and Φ(v) ≤ lim infn→∞ Φ(vn) = Φ(u3), a contradiction.

Thus we have shown that λ1(−∆− fu(x, u3)) ≤ 0 ≤ λ2(−∆− fu(x, u3)). Generically
u3 is nondegenerate, hence a critical point of mountain pass type.

From now on we assume that there are only finitely many nodal equilibria in C.

Proposition 6.3. If there are only finitely many nodal equilibria in C then there exists
a nodal equilibrium u3 ∈ C of mountain pass type and satisfying

max{min Φ(S+), min Φ(S−) } < Φ(u3) < 0 = Φ(0) .

Recall that a critical point u0 of Φ is of mountain pass type if for every small open
neighborhood U of u0 the set Φc ∩ U r {u0}, c = Φ(u0), is not path-connected. This
notion has been introduced in [26].

The proof of Proposition 6.3 and the existence of a second nodal equilibrium u4 ∈ C is
based on Morse theoretic arguments. This allows for weaker hypotheses and yields more
information on the solutions than if working with degree theory; see Remarks 6.5 and
6.6. Let H∗ denote singular homology theory with coefficients in the field F2 = {0, 1}.
In fact, other homology or cohomology theories will work as well. For an isolated critical
point u0 of Φ: E → R with c := Φ(u0) the critical groups are defined by

Ck(Φ, u0) := Hk(Φ
c,Φc r {u0}) , k ∈ Z.

These are in fact F2-vector spaces. Here Φc is considered as a subset of E. As a
consequence of a result of Palais [37, Corollary to Thm. 12] there also holds Ck(Φ, u0) ∼=
Hk(Φ

c∩X,Φc∩Xr{u0}). Due to the excision property of homology we have Ck(Φ, u0) ∼=
Hk(Φ

c ∩ U,Φc ∩ U r {u0}) for every neighborhood U of u0 in E or in X; for instance,
we may take U = C. By [43, Thm. III.4.8] the critical groups are isomorphic to the
homology of the Conley index C({u0}) of {u0}, considered as isolated invariant set of
the parabolic semiflow:

Ck(Φ, u0) ∼= Hk(C({u0})).
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Proof of Proposition 6.3. We fix ε ∈ (0, ε0], so C+
ε = [εe1, u] ⊂ C and C−

ε = [u,−εe1] ⊂
C are strictly positive invariant. For c ∈ R we set Φc

C := {u ∈ C : Φ(u) ≤ c} ⊂ C and
Ac := Φc

C ∪C+
ε ∪C−

ε . For c < inf Φ(C) we have H0(A
c) ∼= F2⊕F2 because Ac = C+

ε ∪C−
ε

is the disjoint union of two convex sets. Since the Morse index of 0 is at least 2 there
exists a path γ : [−1, 1] → W u(0) r {0} ⊂ C with γ(±1) ∈ C±

ε . For c ≥ max[−1,1] Φ ◦ γ
the inclusion

ic : C+
ε ∪ C−

ε ↪→ Ac

induces a homomorphism

ic∗ : H0(C
+
ε ∪ C−

ε ) → H0(A
c)

with ker ic∗ 6= {0}. Fixing an isomorphism H0(C
+
ε ∪C−

ε ) ∼= F2⊕F2 we may assume that
ker(ic∗) is generated by the element α ∈ H0(C

+
ε ∪C−

ε ) corresponding to (1,−1) ∈ F2⊕F2.
Now we define

c3 := inf{c ∈ R : ic∗(α) = 0} = sup{c ∈ R : ic∗(α) 6= 0}.

Clearly c3 ≤ max Φ◦γ < 0. Moreover, c3 ≥ inf Φ(C+) because for c < inf Φ(C+) the set
Ac = Φc

C ∪C+
ε ∪C−

ε is the disjoint union of the closed subsets C+
ε and Φc

C ∪C−
ε . Hence

C+
ε and C−

ε lie in different connected components of Ac, so ker(ic∗) = {0}. Analogously
one sees that c3 ≥ inf Φ(C−).

Next we claim that H1(A
c3+δ, Ac3−δ) 6= {0} for δ > 0 small. Consider the commuta-

tive diagram:

H1(A
c3−δ, C+

ε ∪ C−
ε )

∂1−−−→ H0(C
+
ε ∪ C−

ε )
i
c3−δ
∗−−−→ H0(A

c3−δ)y yid

y
H1(A

c3+δ, C+
ε ∪ C−

ε )
∂2−−−→ H0(C

+
ε ∪ C−

ε )
i
c3+δ
∗−−−→ H0(A

c3+δ)yj1

H1(A
c3+δ, Ac3−δ)

Since ic3+δ
∗ (α) = 0 there exists β ∈ H1(A

c3+δ, C+
ε ∪ C−

ε ) with ∂2(β) = α by exactness of
the second row. Then j1(β) 6= 0 because otherwise there exists γ ∈ H1(A

c3−δ, C+
ε ∪C−

ε )
with i∗(γ) = β; here we used the exactness of the first column. This yields ∂1(γ) = α
and therefore ic3−δ

∗ (α) = ic3−δ
∗ ◦ ∂1(γ) = 0, contradicting the definition of c3.

It follows that c3 is a critical value of Φ|C , so there exists an equilibrium in C at the
energy level c3. In order to see that there exists a nodal equilibrium u3 ∈ C of mountain
pass type with Φ(u3) = c3 we choose δ > 0 so that there are no nodal equilibria u ∈ C
with Φ(u) ∈ [c3− δ, c3 + δ] r {c3}. Let K denote the finite set of nodal equilibria u ∈ C
with Φ(u) = c3. Then K equals the set of equilibria in Ac3+δ rAc3−δ because all signed
equilibria from C are contained in C+

ε ∪ C−
ε . Moreover, the pair (Ac3+δ, Ac3−δ) is an

index pair for K in the sense of [43], and H∗(A
c3+δ, Ac3−δ) is the homological Conley
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index of K. Theorem I.10.4 of [43] yields

{0} 6= H1(A
c3+δ, Ac3−δ) ∼=

⊕
u∈K

H1(C({u})).

Consequently there exists an equilibrium u3 ∈ K with nontrivial critical group
H1(Φ

c3 ,Φc3 r {u3}) ∼= H1(Φ
c3
C ,Φ

c3
C r {u3}) ∼= H1(C({u3})) 6= {0}. Now [9, Prop. 3.3]

states that u3 is of mountain pass type.

Proposition 6.4. Suppose that Cµ(Φ, 0) 6= 0 for some µ ≥ 2, and that there are only
finitely many nodal equilibria in C. Then there exists a nodal equilibrium u4 ∈ C with
u4 6= u3, and one of the following holds:

(i) Φ(u4) < 0 and Cµ−1(Φ, u4) 6= {0}.

(ii) Φ(u4) > 0 and Cµ+1(Φ, u4) 6= {0}.

Remark 6.5. In Proposition 6.4 the origin may be a degenerate equilibrium and may
even have trivial local degree. Recall that the local degree deg(∇Φ, 0) is related to the
critical groups via

deg(∇Φ, 0) =
∞∑

k=0

(−1)k dimCk(Φ, 0)

A proof of this can be found in [17, Theorem II.3.2]. The formula holds for ∇Φ: E → E
and the critical groups defined in E. (However, since ∇Φ(u) = u − (−∆)−1(f( . , u))
we may also work in X.) If 0 is a nondegenerate equilibrium with Morse index µ then
Cµ(Φ, 0) ∼= F2.

Remark 6.6. The additional information on the critical groups obtained via our Morse
theoretic arguments gives estimates on the index and on the nullity of the solutions. If
µ(u4) denotes the Morse index of u4 and ν(u4) = dim ker(−∆ − fu(x, u4)) its nullity
then the Shifting Theorem I.5.4 from [17] yields µ(u4) ≤ µ− 1 ≤ µ(u4) + ν(u4) in case
(i) and µ(u4) ≤ µ+ 1 ≤ µ(u4) + ν(u4) in case (ii).

Remark 6.7. Suppose that 0 is a nondegenerate equilibrium with Morse index µ. Then
the existence of u4 6= u3 with Cµ−1(Φ, u4) 6= {0} or Cµ+1(Φ, u4) 6= {0} follows easily
from the Morse relations [43, Thm. III.3.5]. In order to see this let En be the finite set
of all nodal equilibria, different from u3 (and 0). There exists a polynomial Q(t) with
nonnegative integer coefficients so that

P (t, S+) + P (t, S−) + P (t, {u3}) + P (t, {0}) +
∑
u∈En

P (t, {u})

= P (t, S) + (1 + t)Q(t).

Here P (t,M) is the Morse polynomial of the isolated invariant set M , and S := invC
is the maximal invariant set contained in C. An index pair for S+ is (C+

ε ,∅), so the
homology Conley index of S+ is Hk(C(S+)) ∼= δk0F2. This yields P (t, S+) = 1. For the
same reasons we have P (t, S−) = P (t, S) = 1. Since u3 is of mountain pass type [9,
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Prop. 3.3] implies Hk(C({u3})) ∼= Hk(Φ
c3 ,Φc3 r {u3}) ∼= δk1F2, where c3 = Φ(u3). Thus

we have P (t, {u3}) = t. Finally, P (t, {0}) = tµ by [43, Thm. III.3.5] because 0 is a
nondegenerate equilibrium with index µ. Thus we have

1 + 1 + t+ tµ +
∑
u∈En

P (t, {u}) = 1 + (1 + t)Q(t).

This can only hold if Q(t) =
∑n

k=0 akt
k satisfies aµ 6= 0 or aµ−1 6= 0. If aµ 6= 0

then there exists u4 ∈ En so that P (t, {u4}) has a nontrivial summand tµ+1, hence
Cµ+1(Φ, u4) ∼= Hµ+1(C(u4)) 6= {0}. Similarly, if aµ−1 6= 0 there exists u4 ∈ En with
Cµ−1(Φ, u4) 6= {0}.

Proof of Proposition 6.4. As in the proof of Proposition 6.3 we set Ac = Φc∪C+
ε ∪C−

ε for
c ∈ R. LetK0 denote the finite set of equilibria u ∈ Cr(C+

ε ∪C−
ε ) with Φ(u) = Φ(0) = 0.

Then we have for δ1 > 0 small:

Hµ(Aδ1 , A−δ1) ∼=
⊕
u∈K0

Hµ(C({u})) ⊃ Hµ(C({0})) ∼= Cµ(Φ, 0) 6= 0 .

Let α0 ∈ Hµ(Aδ1 , A−δ1) be a nontrivial element of the summand Hµ(C({0})). We con-
sider the exact sequence of the pair (Aδ1 , A−δ1):

. . .→ Hµ(Aδ1)
i∗→ Hµ(Aδ1 , A−δ1)

∂0→ Hµ−1(A
−δ1) → . . .

Case 1. ∂0(α0) = 0. Then there exists β0 ∈ Hµ(Aδ1) with i∗(β0) = α0. For c ≥ δ1, let
jc : Aδ1 ↪→ Ac denote the inclusion. For c large enough we have jc

∗(β0) = 0 ∈ Hµ(Ac). In
fact, choose B ⊂ Aδ1 compact so that β0 lies in the image of Hµ(B) → Hµ(Aδ1). Then
jc
∗(β0) = 0 for every c ≥ max Φ(convB), convB ⊂ C the convex hull.

Now we define

c4 := sup{c ≥ δ1 : jc
∗(β0) 6= 0} = inf{c ≥ δ1 : jc

∗(β0) = 0}.

It follows easily that for δ2 > 0 small

Hµ+1(A
c4+δ2 , Ac4−δ2) 6= {0}

which yields as in the proof of Proposition 6.3 a nodal equilibrium u4 with Φ(u4) = c4 ≥
δ1 > 0 and Cµ+1(Φ, u4) 6= {0}.

Case 2. ∂0(α0) 6= 0. Let i1 : A−δ1 ↪→ (A−δ1 , C+
ε ∪ C−

ε ) be the inclusion. Since µ ≥ 2
and C+

ε ∪C−
ε is the disjoint union of two closed convex sets, we have i1∗ ◦ ∂0(α0) 6= 0 in

Hµ−1(A
−δ1 , C+

ε ∪C−
ε ). This follows from Hk(C

+
ε ∪C−

ε ) = 0 for k ≥ 1 and the long exact
sequence of the pair (A−δ1 , C+

ε ∪ C−
ε ).

For c ≤ −δ1 let jc : (A−δ1 , C+
ε ∪ C−

ε ) ↪→ (A−δ1 , Ac) be the inclusion. Now we define

c4 := inf{c ≤ −δ1 : jc
∗(i1∗ ◦ ∂0(α0)) = 0}

= sup{c ≤ −δ1 : jc
∗(i1∗ ◦ ∂0(α0)) 6= 0}.
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Observe that j−δ1
∗ (i1∗ ◦ ∂0(α0)) = 0 and jc

∗(i1∗ ◦ ∂0(α0)) 6= 0 for c < inf Φ(C), so c4 ∈
[inf Φ(C),−δ1]. Let

hc
∗ : Hµ−1(A

c, C+
ε ∪ C−

ε ) → Hµ−1(A
−δ1 , C+

ε ∪ C−
ε )

be induced by the inclusion. By the definition of c4, for δ2 > 0 small i1∗ ◦ ∂0(α0) =
hc4+δ2
∗ (β0) for some β0 ∈ Hµ−1(A

c4+δ2 , C+
ε ∪C−

ε ) but i1∗ ◦∂0(α0) does not lie in the image
of hc4−δ2

∗ . Therefore β0 does not lie in the image of

Hµ−1(A
c4−δ2 , C+

ε ∪ C−
ε ) → Hµ−1(A

c4+δ2 , C+
ε ∪ C−

ε ),

hence 0 6= j∗(β0) ∈ Hµ−1(A
c4+δ2 , Ac4−δ2). Here we have denoted the inclusion

j : (Ac4+δ2 , C+
ε ∪ C−

ε ) ↪→ (Ac4+δ2 , Ac4−δ2). As before there exists a nodal equilibrium
u4 ∈ C with Φ(u4) = c4 ≤ −δ1 < 0 and Cµ−1(Φ, u4) 6= {0}.

This proves Proposition 6.4 if µ > 2. In the case µ = 2 it might be possible that
u4 = u3 and c4 = Φ(u4) = Φ(u3) = c3. If that happens to be the case we show now
that there exists another nodal equilibrium u′4 ∈ C with Φ(u′4) ≤ c4 = c3. In fact,
recall from the proof of Proposition 6.3 that there exists β ∈ H1(A

c3+δ, C+
ε ∪ C−

ε ) with
∂2(β) 6= 0 ∈ H0(C

+
ε ∪ C−

ε ) and j1(β) 6= 0 ∈ H1(A
c3+δ, Ac3−δ), δ > 0 small. We may

assume that δ = δ2 and c3 + δ ≤ −δ1 by choosing δ, δ1 and δ2 small enough. Let
∂3 : H1(A

−δ1 , C+
ε ∪C−

ε ) → H0(C
+
ε ∪C−

ε ) be the boundary operator in the exact sequence
of the pair (A−δ1 , C+

ε ∪ C−
ε ). Then we have ∂2 = ∂3 ◦ hc3+δ

∗ , hence

∂2(β0) = ∂3 ◦ hc3+δ
∗ (β0) = ∂3 ◦ i1∗ ◦ ∂0(α0) = 0

because ∂3 ◦ i1∗ = 0 by exactness. It follows that β0 6= β.
Recall that in an F2-vector space Y two elements x, y ∈ Yr{0} are linearly dependent

if and only if x = y. If j1(β0) 6= 0 and j1(β0) 6= j1(β) then dimH1(A
c3+δ, Ac3−δ) ≥ 2. If

u3 would be the only nodal equilibrium with Φ(u3) = c3 we would have

H1(A
c3+δ, Ac3−δ) ∼= C1(Φ, u3) ∼= F2,

a contradiction. It remains to consider the case that j1(β0) = 0 or j1(β− β0) = 0. Then
the exact sequence

H1(A
c3−δ, C+

ε ∪ C−
ε ) → H1(A

c3+δ, C+
ε ∪ C−

ε )
j1→ H1(A

c3+δ, Ac3−δ)

shows that there exists γ0 6= 0 ∈ H1(A
c3−δ, C+

ε ∪ C−
ε ). Now we define

c′4 := inf{c ∈ R : H1(A
c, Cε ∪ C−

ε ) 6= 0} < c3

and conclude as usual that there exists a nodal equilibrium u′4 ∈ C with Φ(u′4) = c′4 and
C1(Φ, u

′
4) 6= 0.

Remark 6.8. The dynamics of the invariant set S = invC can be described in detail if
there are no other nodal equilibria in C except u3, u4. Suppose that Φ(u4) > 0. First
of all, u3 is of mountain pass type and lies in ∂A(S+) ∩ ∂A(S−) ∩ ∂W u(0). There exist
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connecting orbits from 0 to u3, from u3 to S+, and from u3 to S−. The unstable set
W u(0) contains the relatively open subsets

W u
±(0) = {u ∈ W u(0) : ϕt(u) ∈ C±

ε for t > 0 large}

which are separated by

W u(0) r (W u
+(0) ∪W u

−(0)) = {0} ∪ (W u(0) ∩W s(u3)).

If 0 is nondegenerate with Morse index µ ≥ 2 then the set of connecting orbits from 0 to
u3 has (covering) dimension at least µ−1 because it separates the setsW u(0)∩A(S+) and
W u(0) ∩A(S−) which are open subsets of W u(0). There exists a connecting orbit from
u4 to 0. If the semiflow is Morse-Smale then there exists an odd number of connecting
orbits. In any case, the complement

W u
c (u4) = W u(u4) rW s(0)

of the set of connecting orbits from u4 to 0 is a relatively open subset of W u(u4). It
contains the two disjoint sets

W u
±(u4) = {u ∈ W u(u4) : ϕt(u) ∈ C±

ε for t > 0 large }

which are separated by the set W u(u4) ∩W s(u3) of connecting orbits from u4 to u3. In
particular, this set is nonempty and has dimension dim(W u(u4) ∩W s(u3)) ≥ µ if u4 is
nondegenerate. If the flow is Morse-Smale then this dimension is equal to µ.

Up to now we proved that at least four nontrivial stationary solutions of (3.1) exist
in the order interval C. In the following proposition we prove that if f is odd in u there
may exist even more nodal equilibria in C. In this case we can assume that u = −u, so
C = −C. We also have

∀u0 ∈ C, ∀t > 0 : ϕt(−u0) = −ϕt(u0), W u
loc(0) = −W u

loc(0).

and P u : W u
loc(0) → Eu is odd. Here P u is defined as in the proof of Proposition 5.7.

Proposition 6.9. Suppose that f is odd in u. Then there exist 2(µ(0) − 1) nodal
equilibria ui, i = ±2, . . . ,±µ(0) in ω(W u

loc(0)). In addition, 0 � ui, i = ±2, . . . ,±µ(0).

Proof. First of all we observe that there exists ρ > 0 such that for Vρ := {u ∈ E :
‖P uu‖X ≤ ρ}, Vρ ∩ W u

loc(0) is X-homeomorphic under P u to {u ∈ Eu : ‖u‖ ≤ ρ }.
Clearly, all solutions starting from ∂Vρ ∩W u

loc(0) are global because ∂Vρ ∩W u
loc(0) ⊂ C.

Due to the compactness of the semiflow generated by (3.1) (see Lemma 4.1(b)) the
ω-limit set ω(u) of u ∈ ∂Vρ∩W u

loc(0) is a nonempty compact and connected set consisting
of equilibria. The sets

M1 := {u ∈ ∂Vρ ∩W u
loc(0) : u∗ > 0 for every u∗ ∈ ω(u0)}, M−1 := −M1
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are relatively open nonempty subsets of ∂Vρ ∩ W u
loc(0). As already mentioned in the

proof of Proposition 5.12 the word “every” may be replaced by the word “some” in the
definition of M1.

Let us now assume:

(6.7)
there are only finitely many pairs of nodal equilibria ui in

⋃
{ω(u) :

u ∈ Vρ ∩W u
loc(0)} ⊂ ∂W u(0), i = ±2, . . . ,±m, m ∈ N.

Define
Mi := {u ∈ ∂Vρ ∩W u

loc(0) : ω(u) = {ui}}, i = ±2, . . . ,±m.
These sets satisfy

m⋃
i=1

(Mi ∪ −Mi) = ∂Vρ ∩W u
loc(0), M−i = −Mi, i = 2, . . . ,m.

Since ui is an isolated equilibrium and Φ(ui) = Φ(u−i) for i = ±2, . . . ,±m, it follows
that

Mi ∩M−i = ∅.
A proof can be found in [41, Proof of Theorem 3.1], for instance. Setting

Ni := ∂Vρ ∩W u
loc(0) ∩

⋃
x∈Mi

{
y : |y − x| < 1

2
dist(x,M−i)

}
i = 2, . . . ,m,

we therefore have an open covering

∂Vρ ∩W u
loc(0) = M1 ∪ (−M1) ∪

m⋃
i=2

(Ni ∪ −Ni)

with M1 ∩ −M1 = ∅, Ni ∩ −Ni = ∅ for i = 2, . . . ,m. Now we define

Oi :=

{
P u(Mi), i = 1,

P u(Ni), i = 2, . . . ,m,

and SρE
u := {u ∈ Eu : ‖u‖ = ρ}. The sets Oi ⊂ SρE

u are open, Oi ∩ −Oi = ∅ and
SρE

u =
⋃m

i=1(Oi ∪ −Oi) because P u : ∂Vρ ∩W u
loc(0) → SρE

u is a homeomorphism. It is
easy to find a closed covering

⋃m
i=1(Ki ∪ −Ki) = SρE

u, Ki ⊂ Oi, i = 1, . . . ,m, hence
m ≥ dim(Eu) ≥ µ(0) (cf. [27, Theorem II.2.7]).

The existence of connecting orbits from 0 to ui follows since ui ∈ ω(u) for some u in
Vρ ∩W u

loc(0) by (6.7).

A. Backward Uniqueness of the Adjoint Equation

Theorem A.1. Let Ω be a smoothly bounded domain in RN . Assume that f : Ω×R →
R is a Carathéodory function, f(·, 0) ∈ L∞(Ω), the function f(x, ·) is continuously
differentiable for a.e. x ∈ Ω and the derivative satisfies the growth condition

|fu(x, u)| ≤ C(1 + |u|p−1)
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for some p < pS. Let ϕ denote the semiflow in H1
0 (Ω) generated by the problem

(A.1)


ut −∆u = f(x, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Assume that (A.1) possesses a (strong) solution on the time interval [0, T ]. Then
ϕT : H1

0 (Ω) → H1
0 (Ω) is differentiable at u0 and its derivative

DϕT (u0) ∈ L(H1
0 (Ω), H1

0 (Ω))

has dense range.

Proof. The differentiability of ϕT is well known; we will just prove the density assertion.
Step 1. Let u ∈ C([0, T ], H1

0 (Ω)) be the solution of (A.1). It then holds that
u ∈ C((0, T ], C(Ω)). We will show

(A.2) |u|p−1 ∈ L2((0, T ), Lρ(Ω)) for some ρ > N.

Due to u ∈ L∞((0, T ), H1
0 (Ω)) this assertion is obvious for N ≤ 2 or p < N/(N − 2).

Hence we may assume N > 2 and p ≥ N/(N − 2).
Let A denote the isomorphism A : H1

0 (Ω) → H−1(Ω) : u 7→ −∆u. Observe that the
Nemytskii mapping f# : H1

0 (Ω) → H−1+ε(Ω) : v 7→ f(·, v) is locally Lipschitz continuous
for suitable ε > 0 small. Consequently, there exists T0 > 0 small such that for all
t0 ∈ [0, T0], the restriction of the solution u to the interval [t0, t0 + T0] can be obtained
as a limit of uk ∈ C([t0, t0 + T0], H

1
0 (Ω)), where

u0(t) := e−(t−t0)Au(t0), uk+1(t) := e−(t−t0)Au(t0) +

∫ t

t0

e−(t−τ)Af(·, uk(τ)) dτ.

Set 2∗ := 2N/(N − 2). Since p < pS, there exists r > N(p− 1) such that

α :=
N

2

( 1

2∗
− 1

r

)
<

1

2(p− 1)
.

Choose 2∗ = r0 < r1 < r2 < · · · < rk = r such that the numbers

αi :=
N

2

( 1

ri−1

− 1

ri

)
, i = 1, 2, . . . , k, βj :=

N

2
· p− 1

rj

, j = 0, 1, 2 . . . , k,

satisfy
αip < 1, αi(p− 1) + βi < 1, i = 1, 2, . . . , k

(notice that such choice is possible due to βi ≤ β0 < 1). Fix t∗ ∈ (0, T0) small and set
tj := jt∗/k, j = 0, 1, 2, . . . , k. Given

v ∈ L∞((t0, t1), L
r0(Ω)) ∩ L∞loc((t0, t1), L

r1(Ω)),
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set
‖v‖r0,r1,α1 := sup

t∈(t0,t1)

(
‖v(t)‖Lr0 + (t− t0)

α1‖v(t)‖Lr1

)
.

Set M1 := 4‖u0‖L2∗ . We will show that

(A.3) ‖uk‖r0,r1,α1 ≤M1

for all k if t∗ = t∗(M1) is small enough.
The assertion follows easily from the Lp − Lq estimates if k = 0. Next assume that

(A.3) is true for some k ≥ 0. Then

(t− t0)
α1‖uk+1(t)‖Lr1 ≤ ‖u(t0)‖Lr0 + (t− t0)

α1

∫ t

t0

(t− τ)−β1‖f(·, uk(τ))‖Lr1/p dτ

≤M1/4 + C(t− t0)
α1

∫ t

t0

(t− τ)−β1(1 + ‖uk(τ)‖p
Lr1 ) dτ

≤M1/4 + C(t− t0)
α1

∫ t

t0

(t− τ)−β1(1 + (τ − t0)
−α1pMp

1 ) dτ < M1/2

and

‖uk+1(t)‖Lr0 ≤ ‖u(t0)‖Lr0 +

∫ t

t0

(t− τ)−β0‖f(·, uk(τ))‖Lr0/p dτ

≤M1/4 + C

∫ t

t0

(t− τ)−β0(1 + ‖uk(τ)‖p
Lr0 ) dτ

≤M1/4 + C

∫ t

t0

(t− τ)−β0(1 +Mp
1 ) dτ < M1/2

for all t ∈ (t0, t1) if t∗ is small enough, hence (A.3) is true for uk+1.
Passing to the limit as k → ∞ in (A.3) we see that u satisfies the same estimate.

Since u ∈ C((0, T ], C(Ω)) we have ‖u(t1)‖Lr1 ≤ M1(t1 − t0)
−α1 . Replacing t0, t1, r0, r1,

α1, β1,M1 with t1, t2, r1, r2, α2, β2 and M2 := 4M1(t1 − t0)
−α1 we obtain ‖u(t2)‖Lr2 ≤

M2(t2 − t1)
−α2 . Repeating this consideration we get ‖u(t∗)‖Lr ≤ Ct−α

∗ for all t∗ small
enough, where C does not depend on t∗. Consequently, choosing ρ := r/(p − 1) and
observing that 2α(p− 1) < 1 we obtain (A.2).

Step 2. Let f1(t) := fu(·, u(·, t)), v0 ∈ H1
0 (Ω) and v ∈ C([0, T ], H1

0 (Ω)) be the
(strong) solution of the problem

vt + Av = f1(t)v(t), t ∈ (0, T ],

v(0) = v0.

Assume on the contrary that R := {v(T ) : v0 ∈ H1
0 (Ω)} is not dense in H1

0 (Ω). Then
there exists z̃0 ∈ H1

0 (Ω) \ {0} such that
∫

Ω
∇z̃0 · ∇w dx = 0 for all w ∈ R, hence

(A.4) (z0, w) = 0, w ∈ R,

where z0 := Az̃0 ∈ H−1(Ω) and by (·, ·) we denote both the scalar product in L2(Ω) and
the duality pairing between H−1(Ω) and H1

0 (Ω).

50



In Step 3 below we show that there exists a (strong) solution

z ∈ C([0, T ], H−1(Ω)) ∩ C((0, T ], H1
0 (Ω))

of

(A.5)

{
zs + Az = f1(T − s)z(s), s ∈ (0, T ],

z(0) = z0.

Due to the Sobolev maximal regularity, we have

v, z ∈ W 1,2
loc ((0, T ), L2(Ω)) ∩ L2

loc((0, T ), H2(Ω)).

Since the function f2 : (0, T ) → L2(Ω) : s 7→ f1(T − s)z(s) is continuous, [4, Theo-
rem II.1.2.2] implies

(A.6) z ∈ C((0, T ), H2−ε(Ω)) ∩ C1((0, T ), H−ε(Ω))

for all ε > 0.
Set y(t) := z(T − t). Then y solves

yt − Ay = −f1(t)y(t), t ∈ [0, T ),

y(T ) = z0,

and

d

dt
(v(t), y(t)) = (vt, y) + (v, yt) = (−Av + f1v, y) + (v, Ay − f1y) = 0 a.e.

Since t 7→ (v(t), y(t)) is absolutely continuous, using (A.4) we obtain

(v0, z(T )) = (v(0), y(0)) = (v(T ), y(T )) = (v(T ), z0) = 0

for all v0 ∈ H1
0 (Ω), hence z(T ) = 0. Since z0 6= 0, there exists s0 > 0 small such that

z(s0) 6= 0, z(s0) ∈ H1
0 (Ω). Now we obtain a contradiction from the backward uniqueness

for the equation (A.5) on [s0, T ) using (A.6) and [1, Lemma A.16] with X0 = H−ε(Ω),
X1 = H2−ε(Ω) ∩ H1

0 (Ω), ε > 0 small. Notice that the assumptions of that lemma are
satisfied since (A.2) implies f1 ∈ L2((0, T ), Lρ(Ω)) for some ρ > N and there exists
q < 2∗ such that

‖f1(T − s)z(s)‖X0 ≤ C‖f1(T − s)z(s)‖L2 ≤ C‖f1(T − s)‖Lρ‖z(s)‖Lq

≤ C‖f1(T − s)‖Lρ‖z(s)‖X1/2

if ε is small enough.
Step 3. It remains to prove the solvability of (A.5). In the proof we will use a

(nonlinear) fixed point argument based on similar estimates as in the proof of (A.2)
(cf. also [7, 15, 44]). Let us mention that the solvability can also be obtained by “linear
methods”, cf. the proof of [6, Lemma 5.1]
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First let us prove the existence of a local solution z ∈ Z := C([0, s0], H
−1(Ω)) ∩

C((0, s0], H
1
0 (Ω)) satisfying

‖z‖Z := sup
0<s<s0

(
‖z(s)‖H−1 + s1/2‖z(s)‖L2 + s‖z(s)‖H1

0

)
<∞.

It is known that there exists CA ≥ 1 such that

(A.7)


‖e−sAw‖H1

0
≤ CA min{‖w‖H1

0
, s−1/2‖w‖L2 , s−1‖w‖H−1},

‖e−sAw‖L2 ≤ CA min{‖w‖L2 , s−1/2‖w‖H−1},
‖e−sAw‖H−1 ≤ CA‖w‖H−1 .

Let BM := {z ∈ Z : ‖z‖Z ≤M}, where M = 6CA‖z0‖H−1 . Given z ∈ BM , define

(Gz)(s) := e−sAz0 +

∫ s

0

e−(s−τ)Af1(T − τ)z(τ) dτ,

Notice that ‖f1(T − τ)‖L∞ ≤ Cf <∞ for τ ∈ [0, s0]. Therefore, given z ∈ BM , we have

‖e−(s−τ)Af1(T − τ)z(τ)‖H1
0
≤ CA(s− τ)−1/2‖f1(T − τ)z(τ)‖L2

≤ CACf (s− τ)−1/2‖z(τ)‖L2 ≤ CACfM(s− τ)−1/2τ−1/2

and

‖e−(s−τ)Af1(T − τ)z(τ)‖H−1 ≤ ‖e−(s−τ)Af1(T − τ)z(τ)‖L2

≤ CA‖f1(T − τ)z(τ)‖L2 ≤ CACf‖z(τ)‖L2 ≤ CACfMτ−1/2.

Using these estimates and (A.7) it is easy to see that G : BM → BM is a contraction (if
s0 is small enough) and its unique fixed point is the desired solution.

The existence of a prolongation z ∈ C([s0, T ], H1
0 (Ω)) follows from the fact that the

linear mapping
H1

0 (Ω) → H−1+ε(Ω) : z(s) 7→ f1(T − s)z(s)

is continuous for suitable ε > 0, uniformly for s ∈ [s0, T ]. This is due to the fact that
f1 ∈ C([0, T ], Lr(Ω)) for some r > N/2.
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