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1.1

Introduction

Images and Fixed Points

A question that often appears is the following: Given a vector space X, a subset A C X,
a function f: A — X and a point y € X, is there z € A such that f(z) =y (a y-point
of f)? Equivalently, does y € R(f) hold true, where R(f) := f(A) is the image of f7?

1.1 Examples. (a) Given g: A — A we search for a fixed point of g, that is, x € A

(d)

such that g(x) = x. Defining f: A — X by f(z) := g(x) — x this problem is
equivalent to searching for a zero of f. Note that this equivalence depends on the
given structure of the additive group in the vector space X. In general sets we do
not have an equivalence of fixed point and zero point problems!

Suppose that f: R* — R is continuously differentiable. We consider an ordinary
differential equation with boundary values for functions u(t) that are defined on
[0, 1]:

i(t) = f(t, u(t),u(t)), t€(0,1),
(1.1) u(0) =0,

u(l) =0.
The theory of ODEs implies the existence of a continuous function k(s,t) (an
integral kernel) such that u(t) is a solution of (1.1) if and only if u € C?([0, 1]) and

(1.2) u(s):/o k(s,t)f(t,u(t), a(t) dt  for all s € [0,1].

We set X := C?([0,1]) and define F': X — X by

F(u)(s) ::/0 k(s,t)f(t,u(t),u(t))dt.

By (1.2) u is a solution of (1.1) if and only if w is a fixed point of F.

Similarly, we may look for solutions of PDEs: Suppose that  C R¥ is a bounded
domain and consider

—Au = f(x,u(x), Vu(z)), x €}

u(z) =0, x € 0N0.
We may wonder if a problem like those introduced above has more than one fixed

point. To address this question we need a more refined theory than that of fixed
points.



1.2 The mapping Degree in One Dimension

In one dimension the mapping degree is just another way to express the content of the
intermediate value theorem. It serves to illustrate how one comes to define the mapping
degree in higher dimensions. Moreover, it will become clear later how the mapping degree
is an extension of the intermediate value theorem to higher dimension.

Suppose that a < b, Q := (a,b) and f € C(Q) are such that 0 € R\ f(99). We define

0, f(a)f(b) >0,
(1.3) deg(f,€,0):= 1, f(@)f(b) <0, f(a) <0,
-1, fla)f(b) <0, f(a)> 0.

If y € R\ f(09), then f(a) —y # 0 and f(b) —y # 0, that is, 0 € R\(f — y)(092). We
define
deg(fa Qa y) = deg(f - Y Qa O)

It is easy to see that in this situation the following hold true:
(i) deg(id,Q,y) =1ify € Q,

(i) deg(f,Q,y) = deg(f,,y) + deg(f, Q2,y) if c € (a,b), Q1 = (a,c), Qs = (¢, b) and
y # f(e)-

To address the question of existence of a y-point of f, the following consequence of the
intermediate value theorem is fundamental:

(iii) if deg(f,Q,y) # 0, then f has a y-point in €.

Item (ii) gives information about the location of y in Q: If f(c) # y, if we know
deg(f? Q7 y) and deg(f7 le y)? and if deg(f7 Q?a y) = deg(f? Q? y) - deg<f7 Qla y) ;é 07 then
there is a y-point in €.

Another property is the homotopy invariance of the mapping degree:

(iv) deg(h(t,-),Q,y(t)) is independent of ¢ if h € C([0,1] x Q) and y € C([0,1]) are
such that y(t) € R\h(t,00) for all t € [0, 1].

In this situation the function h is called a homotopy. One could think of it as a continuous
deformation from the function h(0,-) to h(1,-) in C(Q).

The property (iv) is proved as follows: To calculate the degree for every t we set
H(t,z) := h(t,z) —y(t) for (t,x) € [0,1] x Q. Then H(t,z) # 0 for all (¢,z) € [0, 1] x L.
Since the function t — H (t, a) is continuous, it does not change sign, by the intermediate
value theorem. The same holds true for the function ¢t — H(t,b). Therefore, the degree
deg(H (t,-),,0) is independent of ¢ because it only depends on the signs of H(t,a) and
H(t,b). Using deg(h(t,-),Q,y(t)) = deg(H (t,-), 2, 0) we conclude.

More generally we define the degree for an open and bounded set {2 C R. Topological
arguments imply that ) consists of a countable set of distinct connected components



Q, = (an,b,), n € N (that is, Q = Uzozlﬁn and a,, b, ¢ ). Obviously, |a, — b,| — 0 as
n — oo because €2 is bounded.

Suppose that f: Q — R is continuous and such that 0 ¢ f(952). We show that only
for a finite number of indices n it holds true that deg(f,€2,,0) # 0: Suppose that ny is
an infinite sequence of indices such that deg(f,{2,,,0) # 0. Since € is bounded and since
A, , bn, € 0L, after passing to a subsequence there is x € 92 such that a,,,b,, — .
Therefore, f(z) # 0and f(an,)f(b,,) > 0 for k sufficiently large. Hence deg(f,(2,,,0) =0
for k sufficiently large. Contradiction!

We may now define

deg(f,9,0) := ) _deg(f, 2,0).
n=1
As before, for y € R\ f(052) we define

deg(fv Qv y) = deg(f - Y, Q’ O)

One can show that this degree has similar properties as the degree on an interval. It has

image Z, that is, for all m € Z there are an open and bounded set 2 C R, f € C'(£2) and
y € R\ f(0) such that deg(f,2,y) = m.

1.3 The Degree in Two Dimensions

In two dimensions we identify R? with C. For the moment we will define the degree only
in the special case of continuously differentiable functions and the open ball with center
0 and radius 1: Q:={2 € C | |z| < 1}, f € C(Q,C) and y € C\ f(9Q). Define the cycle
v € CY([0,1],C) by y(t) := *™. Then 9Q = || := R(y). We define

1 1
1.4 deg(f,Q,y) .= — dz.
(1.4) (20 =5z |

271 Sy 2 — Y

The integral is the winding number of the cycle f o v with respect to y. With the
properties of the winding number one proves that items (i) and (iii) of the previous
section hold true, and that also (iv) holds true if i and y are continuously differentiable.

1.2 Example. We define ¢,, € C*(Q,C) by ©,(2) := 2", where n € Ny, and we calculate
the degree of ¢, with respect to y = 0. Then (g, o v)(t) = exp(27int). Consequently,

1 1 1 ['27i 2mint
deglon 0.0 = o0 [ Tas— oL [ ORI gy,
211 oy 0n 2 27 J,  exp(2rwint)




2 Construction of the Degree

In this section we will show that there is a unique mapping “deg”, the (mapping) degree,
which assigns integers to triplets consisting of an open bounded subset  C RY, a
continuous function f: Q — RY and a point y € RV\ £(09), and which has the following
basic properties:

(D1) deg(id,,y) =1if y € €,

(D2) deg(f,$,y) = deg(f, Q1,y) +deg(f, Qa,y) if 21, Qs are open subsets of 2 such that
y & fIQ\(Sh U Q)

(D3) deg(h(t,-), 2, y(t)) is independent of t € J := [0,1] if h: J x Q — R is continuous,
y: J — RY is continuous and y(t) ¢ h(t,0Q) for all t € J.

2.1 Tools

Before we begin we need to establish notation and some topological concepts.

2.1.1 Topological Concepts and Function Spaces

We denote R* := (0,00), R™ := (—00,0), RT := R* U {0} and Ny := NU {0}.
In this section suppose that X, Y are metric spaces with metrics dx and dy. Often we
will omit the index in metrics and norms if the context is clear.

Notation. Suppose that x € X and r > 0. We define

B.(z) =B (x; X) :={ye X |dz,y) <r}, open ball,
B,(z) =B, (2; X) :={y € X |d(z,y) <7}, closed ball,
Sp(z) == Sp(; X) ={ye X |dz,y) =r}, sphere.

2.1 Definition. Suppose that f,g: X — Y are continuous. For J := [0, 1] suppose that
h: Jx X — Y is continuous and such that h(0,z) = f(x) and h(1,z) = g(x) for all
z € X (ie, h(0,-) = f and h(1,-) = g). Then h is called a homotopy from f to g.

2.2 Definition. Suppose that X is a metric space and E a Banach space. We set

C(X,FE) :={u: X — F | uis continuous },
Ce(X,E):={u: X — E | uis continuous and u(X) is bounded }.



Then Cp(X, E), together with the norm

ulles x5y == llullex.py = llullso := supllu(z)]|e,
zeX

is a Banach space. If F = R, then we write C'(X) and Cg(X) instead of C(X,R) and
Cp(X,R).

2.3 Remark. If X is compact, then C(X, F) = Cs(X, E).
2.4 Definition. Suppose that M, N € N and Q C R¥ is open. We define for n € N,

C™(Q,RM) := {u: Q — R | w is n times continuously differentiable in Q },

Ce(Q,RM) = () C™(Q,RY).
n=1

2.1.2 The Extension Theorem of Tietze-Dugundji

Suppose that X,Y aresets, ACX, f: A=Y, g: X > Y. We call g an extension of f
to X if g(x) = f(z) for all z € A.

2.5 Definition. Suppose that X is a set and that & and V are coverings of X. If for all
V €V there is U € U such that V C U, then V is a refinement of U.

2.6 Definition. Suppose that X is a topological space. A collection A of subsets of X
is locally finite if every © € X has a neighborhood U such that U N A # @ only for a
finite number of A € A.

2.7 Definition. A topological space is paracompact if it is Hausdorff and if every open
covering admits a locally finite refinement.

Without proof we will use the following result of general topology:
2.8 Theorem (Stone). Every metric space is paracompact.

2.9 Theorem (Tietze-Dugundji). Suppose that X is a metric space, E is a normed
space, A C X is closed and not empty, and f: A — E is continuous. Then f has a
continuous extension g: X — E such that g(X) C conv(f(A)).

Proof. By Theorem 2.8 there are an index set J and open sets V; C X such that
V:={V;|je J}isalocally finite covering of X\ A, and such that for all j € J there is
r; € X\A with V; C Bust(a;,4)/2(7;). We define for x € X\ A

@ =1 ey
P = dist(z, 0Vj) z eV

and

R 2 1C)
%( ) . Zkej Sﬁk(x)



Clearly, ¢; is continuous in X'\ A (since “dist” is Lipschitz continuous). Since V is locally
finite, the sum is well defined and continuous in X'\ A. Since V covers X\ A4, the sum is
positive in X\ A. This implies that v, is continuous in X'\ A, that 0 <1; <1, and that

EZjEJu% =1
For all j € J pick a; € AN Blest(x A)(z;). We define

2 e f(x) reA
g”'{zmwwﬂm e X\A

Clearly, g is continuous in A because it is an extension of f. The sum is finite in a
neighborhood of a point z € X\ A. It follows that g is continuous in X\ A. It remains to
prove that gl is continuous in 94, because X = AU X\A and AN X\A = 0A.

Let 7* € 0A and € > 0. We fix § > 0 such that ||f(a) — f(2*)|| < ¢ if a € AN Bs(a*).
Suppose that z € (X\A) N Bj/g(x*). If j € J satisfies « € Vj, then

2d(z,x;) < dist(z;, A) < d(zj,z") < d(xj,z) + d(z,z"),
that is,
(2.1) d(z,x;) < d(x,z7).
We also obtain that
(2.2) d(z;,a;) < 2dist(x;, A) < 2d(z;,z%) < 2(d(z;,x) + d(z,z")) < 4d(z,x").
Equations (2.1) and (2.2) imply that
d(z*,a;) < d(z",z) +d(z,x;) + d(zj,a;) < 6d(z*,x) <.
Hence || f(z*) — f(a;)|| < ¢ for all j € J such that x € V;. This implies that

S usa)fa) - Fa)| < S vse =

jed jed

lg(x) = f(=")] =

Since z* € 0A and ¢ were arbitrary, this finishes the continuity proof for g.
It is obvious that g(z) is a convex combination of elements of f(A) for all x € X. O

2.1.3 Sard’s Lemma

2.10 Definition. If O C R¥ is open and f: Q — RY continuously differentiable then we
call J¢(x) := det Df(z) the Jacobean of f in x. If Jp(x) = 0 then z is a critical point of
f. If Jp(x) # 0 then x is a reqular point of f. We write K;(Q) :={z € Q| Je(x) =0},
and we write K if from context it is clear which is Q. We say that y € RY is a regular
value of f: Q — RN if f~1(y) N K;(Q) = &, and a singular value otherwise.

2.11 Lemma. Suppose that Q C RY is open and bounded, f € C(Q,RY) N C(Q,RY),
and y € RN\ f(9Q). If y is a regular value of f then f~(y) is finite.



Proof. K := f~'(y) C Q is compact because f is continuous and  bounded. Arguing
by contradiction, suppose that K is infinite. Then there is a sequence (z,) C K such
that z,, # x, if m # n. Since K is compact we may assume that there is © € K such
that z, — x as n — oco. Since y is regular, the inverse function theorem implies that
there are open neighborhoods U of x and V' of y such that f|U is a bijection between U
and V, that is, U N K = {x}. But this contradicts z, — z in K'! O

2.12 Definition. If a;, < b, for k = 1,2,..., N then K := H;S;l[ak,bk] is a brick
(rectangular parallelepiped) of dimension N with volume |K| = [[r_,(br — az).

More generally, for a Lebesgue measurable subset A C RY we denote by |A| its
Lebesgue measure.

Recall that for normed spaces F, F we denote by L(E, F') the vector space of bounded
linear operators from F to F', together with norm

| L\l ze,F) = sup |Lz|.
x€B1FE

If F is Banach then £(F, F') is also a Banach space.

2.13 Proposition (Sard’s Lemma). Suppose that 2 C RY is open and f € C*(2,RY).
Then |f(Kyf)| = 0.

Proof. Suppose that

Q= o k 1 k 1

k=1

n € N, nxGZN}.

Then Q is a countable family of closed cubes covering RY. We set
R={QeQ|QCQ}.

It is clear that R is countable and covers 2. Therefore, it is sufficient prove that
If(K;NQ)|=0forall Q@ e R.

Suppose that () € R is a cube of side length » > 0. Since f is continuously differentiable
in a neighborhood of ) we may define Cy := max,cq||Df(z)||. Note that f(K;N Q)
is compact and hence measurable. Suppose that ¢ € (0,1]. It is sufficient to show
that | f(K; N Q)| < Cse, where Cy does not depend on €. Since Df is continuous and
Q is compact, Df is uniformly continuous on . There is m(e) € N such that for
6(e) := VN r/m(e) it holds true that:

IDf(z) =Df) <e  forallz,yeQ, [v—y[<d(e)



Hence

(2.3) |f(z) = fly) = Df(y)lz - y]|

[ DA =+ o)l - s1ae - Ds e - )

A(Dﬂu—wy+m»—nﬂmﬂx—Md4

gAuDﬂu—ﬂy+m»—Dﬂwww—m&
< ed(e)

for all z,y € Q, |z — y| < d(e). We decompose @ into n(e) cubes Q, k =1,2,...,n(e),

with sides parallel to the canonical base, with pairwise disjoint interiors and each with

diameter 6(¢). The side length of @y, is d(¢)/v/N = r/m(e). Therefore, n(c) = m(e)".
We prove that there is C's > 0, independent of € and k, such that

(2.4) f(Qg) is measurable and | f(Qx)| < Csed(e)N if Ky NQy # 2.

Suppose that z* € K;N Q. We define L := D f(z*), @vk =Qr— 2" and g: @vk — RY by
g(x) = f@" +x) = f(27).

Then (2.3) implies that

(2.5) lg(z) — La| < ed(e)  for all z € Qy.

Since J;(z*) = det(L) = 0, the image of L is contained in a subspace A of RY of
dimension N — 1. Pick b; € S;RY N A+ and complete {b;} to an orthonormal base

{b1,bg,..., by } of RN, Using (2.5), (Lz)-b; = 0 and |b;| = 1 we calculate for = € Q:
lg(x) - b1 = |(g9(x) — L) - by < |g(x) — La| < ed(e).
Fori=2,3,..., N we obtain for x € @; that
lg(z) - bi| = [(9(x) — L) - bi| + [(Lx) - bi| < |g(x) — La| + || L] =] < (e + || L]])d(e)
because @; C §5(5)RN . This implies that g(@;) is contained in a rotated brick with sides
that are parallel to the b, with volume 2V (1+[|L[)N~"ed(e)™. Setting Cy := 2N (14+C1)V!
and using f(Qr) = f(2*) + g(Qk), we obtain (2.4), noting that f(Qy) is compact and

therefore measurable.
There are no more than n(e) = m(e) cubes Q. that satisfy K; N Qi # . Since

{Qk},’j(j is a covering of @,
fuEne e J o @),
KiNQr#2
From (2.4) we conclude that
FE Q< Y [F(Q)] < mle)VCaed(e)V = CaNVPrNe = Cae,
KiNQr#2

where Cy := C3NV/2¢N is independent of ¢. O

10



2.1.4 Smoothing
2.14 Definition. Suppose that Q C RY is open. If f € C'(Q, RM), then we call

supp(f) :={z e RN [ f(z) 0} NQ

the support of f. We define for n € Ny

CHQ) :=={ue C™(Q) | supp(u) is compact }

C2(Q) =[] CreQ).
n=1
2.15 Definition. Fixing N € N we define € C>°(RY) by

n(z) = {CeXp (II\Q;—J || <1

0 lz| > 1,

where C' > 0 is such that [,y ndz = 1. For 6 > 0 we define

ns(x) = %N n(%) :

It follows that ns € C°(RY), that

(2.6) supp(ns) = B5(0),

and that

(2.7) / nsdr =1
RN

for all > 0. The functions ns form a family of mollifiers.

2.16 Proposition. Suppose that u € C(RY). For § > 0 we define the smoothing
us: RN — R of u by the convolution of u and n;:

Bs(z)

28 ws)i= r 0@ = [ e pu)dy= [ e pul)dy
Then ug has the following properties:

(i) us € C*(RY),

(ii) us converges uniformly to u in compact subsets of RN as § — 0,

(iii) if @ C RY is open and if u is continuously differentiable in Q then dyus converges
uniformly to O;u in compact subsets of Q as o — 0, for allt=1,2,...,N.

11



2.2 Uniqueness

Our goal here is to deduce, step by step, the necessary form of the mapping degree from
its proposed properties.

2.2.1 Reduction to Linear Operators

2.17 Proposition. A degree with properties (D1)~(D3) is determined by its values on
triplets (g, z), where Q@ C RY is open and bounded, g € C(Q,RY) N C>®(Q,RY) and
2 € RN\ g(99Q) is a regular value of g.

Proof. Suppose that Q C R is open and bounded, f € C(Q,RY) and y € RV\ f(99).
We set § := dist(y, f(0Q)) > 0. By Theorem 2.9 we may assume that f € C(RY RY).
With Proposition 2.16 and its items (i) and (ii), applied to each of the components of
f, we construct g € C*(RY,R¥) such that sup,.g|f(z) — g(z)| < §/3. Using Sard’s
Lemma (Proposition 2.13) we pick a regular value z € Bs/3(y) of g. Moreover, we define
the homotopy h(t,z) := (1—1t)f(x)+tg(x) and the map w(t) := (1 —t)y+tz. Iif t € [0, 1]
and x € 0€), then

h(t,2) —w(t)| = |f(z) —y = t(f(z) — g(z) + 2 — y)|
> |f(@) =yl = t(|f(2) —glx)| + ]y —2[) 20 —1(6/3+/3) = 5/3.

Hence w(t) ¢ h(t,00) for all t € [0,1] and (D3) imply that

(2.9) deg(f, 92, y) = deg(g, €2, 2)
if “deg” is a degree that satisfies (D1)—(D3). O

2.18 Proposition. A degree with the properties (D1)~(D3) is determined by its values
on triplets (L, By,0), where L € L(RY,RY) is an isomorphism.

Proof. Suppose that Q C RY is open and bounded, f € C(Q,RY) and y € RN\ f(99).

First suppose that f~!(y) = @. By definition, & is an open subset of Q. Using Q; := Q
and €, := @ (D2) implies that deg(f, @,y) = 0. Using Q; := &, Qy ;= and f~!(y) = @
(D2) implies that deg(f,2,y) = 0.

If f~!(y) # @ we may assume by Proposition 2.17 that f € C(Q,RY) N C>(Q,RY)
and y ¢ f(Ky). Lemma 2.11 implies that there are n € N and x1,z2,...,z, € Q such
that f~'(y) = {z1, %9, ..., 2, }. There is r > 0 (which can be selected arbitrarily small)
such that the balls B, () are disjoint. Property (D2) implies that

(2.10) deg(f,Q,y) = > deg(f, Br(z1),v).

Hence deg(f,€2,y) is determined by the values of deg(f, B.(zx),y) (k=1,2,...,n).

12



To calculate deg(f, B.(zx),y) fix k and define L := D f(xy). Since L is an isomorphism
we have for x € RY that |z| = |[L~'Lz| < ||L7'|]|Lx|, that is,

ki
L]

(2.11) |Lz| > for all + € RY.

Moreover, f(z)) =y implies that

|f(z) —y — Llz — z]|
|z — x|

—0 as ¥ — Tp.

Fix r small enough such that

|z — x|
2| L7

We define the homotopy h(t,x) := (1 —t) f(x) + t L[z — x;] and the map w(t) := (1 —t)y.
With (2.11) and (2.12) we calculate for t € [0,1] and x € S, (xy):

(2.12) |f(x) —y — L[z — x| < for all z € B, ().

h(t,z) —w(t)| = [L[z — z] + (1 =) (f(z) —y — Lz — 24])]

Ea % I
> |L[l‘—$k]| - (1 —t)|f(l‘) _y_L[x_ka 2 2||L_1|| - 2||L_1|| >

It follows that w(t) & h(t,0B,(xy)) for all t € [0,1], and (D3) implies that

Pick R > 0 sufficiently large such that B,(xy) C Bg(0). Since L is an isomorphism,
Ljx — zx] = 0 only for = x;. Hence (D2) implies (using €y := B, (zx) and Qy := @)
that

(2.14) deg(L[- — k], Br(zx),0) = deg(L[- — zx], Br(0),0).
The homotopy h(t,z) := (1 —t) L[z — x| + tLa satisfies for t € [0, 1] and x € Sg(0) that
v = (L= )zp| _ Jof = |oa] R (R—7)

0.

h(t,z)| = |Llx — (1 — t)xi|| > > > > 0.
| ( )l | [ ( ) k” ||L_1|| HL—1” HL—l”

Hence (D3) implies that

(2.15) deg(L[- — k], Br(0),0) = deg(L, Br(0),0).

Another application of (D2) proves that
(2.16) deg(L, Br(0),0) = deg(L, B1(0),0).
Combining (2.10) with (2.13)-(2.16) we conclude that

(2.17) deg(f,Q,y) =Y _deg(Df(xx), By,0).
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2.2.2 The Degree of a Linear Operator

2.19 Lemma. Suppose that E is a normed space of finite, positive and even dimension.
Then there is a homotopy h of —idg to idg such that

h(t,z) =0 implies that x = 0.

Proof. Suppose that dim(£) = 2k with & € N. For ¢ € [0, 1] we define a linear operator
A(t) € L(E), represented by a matrix with respect to a fixed base of E. First we set

B(t) = (— cos(mt)  sin(mt) )

—sin(nt) — cos(mt)
and then
B) 0 0 0
0 Bt 0 0
At)y:=1] 0 0 B(t) 0
0 0 0 - B (t)

Is clear that det(A(t)) = 1 and that hence A(¢) is an isomorphism for all t. Moreover,
with respect to the norm in L(E), A(t) depends continuously on ¢ because the coordinates
of A(t) are continuous. If ¢,, — ¢t and x,, — x then

HA(tn)xn - A(t)x”E < HA(tn)xn - A<t>xn’|E + HA(t)xn - A(t)xHE
< lzallel|Atn) — Al ey + 1AW |2 lzn — 25 — 0

because A € C([0,1], L(F)) and ||z,||g — ||x||g. Hence h(t,z) := A(t)x is continuous.
Is clear that h(0,2) = —z and h(1l,x) = x. Since A(t) is an isomorphism, A(t)z = 0
implies that z = 0. [

2.20 Remark. By (D1) and (D3), Lemma 2.19 implies that deg(—id, BiR?**,0) =1 for
ke N.

2.21 Lemma. Suppose that “deg” is a degree with (D1)—~(D3) in dimension 1. Suppose
moreover that Q@ C R is open, bounded, and such that 0 € 2. Then deg(—id, 2,0) = —1.

Proof. By (D2) we may assume that Q = B;. We define f € C(By(1)) by f(z) :=
|z — 1| — 1. Since f and 1 have the same values on 0Bs(1), it follows by Exercise Sheet 2,
N° 1, that

deg(f, B2(1),0) = deg(1, B2(1),0) = 0.

Here we used the argument of the second paragraph of the proof of Proposition 2.18, i.e.
that the function 1 has no zero. It follows that

deg(f, B1(2),0) = deg(id — 2, B1(2),0) = deg(id, B1(2),2) 2 1.
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hence (D2) and 0 ¢ f(By(1)\(B1(0) U By(2))) imply that

deg(—id, B1(0),0) = deg(f, B1(0),0)
= deg(f, B2(1),0) — deg(f, B1(2),0) =0—1= —1.

]

2.22 Proposition. Suppose that A is a linear isomorphism in RY and “deg” a degree
that satisfies (D1)—(D3). Then deg(A, By,0) = sgn(det(A)).

Proof. From the Jordan normal form of a matrix we deduce the existence of invariant
subspaces F, G for A such that RY = F @ G, sgn(det(4)) = (—1)3mUE) A has only
negative eigenvalues and Al has only eigenvalues in C\(—o0,0]. Denote by Pr, Pg the
projections corresponding to the splitting FFéG. Since F, G are invariant, PrAPp = APp,
PgAPG:APG and PFApgngAPFIO Hence PFA:PFA(PF+Pg) :PFAPF:
APr and similarly PoA = APg.
We define
h(t,z) = (1 —t)Ax + t(—Pp + Pg)x.

If t € [0,1] and # € RY satisfy h(t,z) = 0, then
0= Pph(t,x) = (1 — t)PFA$ — tPFfI? = (1 — Zf)APF.%' — tPFl'

For t = 1 we obtain Prz = 0. For ¢t < 1 it follows that

t

APFJT:l_t

PFI.

Hence Prx = 0 because A|r has only negative eigenvalues. On the other hand we have
0= Pgh<t,$) = (1 — t)APGx + tPG{E.

For t = 1 we obtain Pgx = 0. For t < 1 it follows that
t

APG:c: —1 tPg;U.

Therefore, Pox = 0 because A|g only has eigenvalues in C\(—o0,0]. Summing up we
proved that @ = Ppx + Pgx = 0 if h(t,x) = 0 and t € [0,1]. Using (D3) we obtain that

(218) deg(A, Bla O) = deg(—PF + PG, Bl) 0)
Case 1: If dim(F') = 0 this implies that
deg(A, By, 0) = deg(id, By,0) = 1 = (—1)4™#) = sgn(det(A)).

Case 2: For dim(F) > 0 we distinguish two cases: If dim(F’) is even then we define
D :={0} and E := F. If dim(F') is odd then we pick D, a subspace of F' of dimension
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1, and E, a subspace of F' with even dimension such that FF = D & E. We define
Qp,Qr € L(F) as the projections with respect to this decomposition of F'.

Using Lemma 2.19 we find h; € C([0,1]x E, E) such that hy(0,-) = —idg, hi(1,-) = idg,
and such that hy (¢, x) = 0 implies x = 0. We define

hg(t, I) = —QDPFI -+ hl(t, QEPFI) + PGx.

Suppose that ¢t € [0,1] and x € RY are such that hy(t,z) = 0. We obtain 0 =
Pohy(t,z) = Pax, 0 = —=QpPrhy(t,z) = QpPrx and 0 = QpPrha(t, z) = hi(t, QpPrz).
The properties of h; imply that Qg Prz = 0. We have therefore proved that

(219) l’:PF$+Pgl7=QDPFZE+QEPFZE+PGI:0 ith(t,x):O, tE[O,l].

We set H := E® G. It follows that RY = D @ H, and that Pp := QpPr and
Py == QgPr + Pg are the projections corresponding to this decomposition of RY. The
definition of hy and (2.19) imply by (D3) that

(220) deg(—Pp + Pg, 31(0)7 0) = deg(—PD + PH, Bl, O)

Case 2a): If dim(F)) is even then Pp = 0 and Py = id. It follows by (2.18), (2.20)
and (D1) that
deg(A, By,0) = 1 = (—1)4mU) = son(det(A)).

Case 2b): If dim(F') is odd then by (2.18), (2.20) and (D1) it only remains to prove
that

(2.21) deg(—Pp + Py, BiRY ,0) = —1,

because —1 = (—1)3m(F) = ggn(det(A)). Let us recall that dim(D) = 1. Suppose
that L: R — D a linear isomorphism. We define another degree deg; in dimension 1:
Suppose that  C R is open and bounded, f € C(Q) and y € R\ f(9Q). We define
Q. := L(Q) + BH, f, € C(Q,RY) by

f*<x> = Lf(LilpDLE) + Pyx
and y, := Ly and prove that y. ¢ f.(0f2): arguing by contradiction, suppose that
there is x € 9, such that f.(x) = Lf(L™'Ppx) + Pyx = y.. It is clear that Pyz = 0
because y, € D. Hence Ppx = x € 0f),, that is, L~'Ppx € 0N, because clearly
0. ND =09(L(N)) = L(0N2). Moreover,
y=L""y. = f(L" Ppx),

contradicting y ¢ f(0€2). Hence we can define

deg1<f7 Q, y) = deg(f*, Q. y*)-

We prove the properties (D1)—(D3) for deg;:
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(D1): Suppose that y € Q. It follows that y. € €, and that
deg, (id, Q,y) = deg(Pp + P, Q. y) = deg(id, Q. y.) = 1.

(D2): Suppose that O, C Q are open and y ¢ f(Q\(Q1 UQ)). By contradiction,
suppose that there is x € Q_*\(Ql* U Q) such that f.(x) = y.. As before, Pyx = 0
and L™'Ppz € Q\(Q; U Q). Moreover, f(L™'Ppz) = y, a contradiction. Hence
Yo & f(Q\(Q1. UQy,)) and we obtain that

degl(f» Q, y) = deg(f*, Q. y*)
= deg(f*u Ql*? y*) + deg(f*7 Q2*7 y*)
= degl(f7 Ql? y) + degl(fa Q?a y)

(D3): Suppose that h € C([0,1]x Q) and y € C([0, 1]) are such that y(t) & h(t, Q) for
all t € [0,1]. We define h,(t,x) := Lh(t, L' Ppz) + Pyx for x € RY and y.(t) := Ly(t).
By contradiction, suppose that there are ¢t € [0, 1] and = € 9, such that h.(t,z) = y.(t).
Once again this implies that L™ Ppz € 9Q and h(t, L~ Ppz) = y(t), a contradiction.
Hence y.(t) ¢ h.(t,00,) for all t € [0, 1] and we obtain that

degl(h(tu ')7 Q? y) - deg(h* (tv ')7 Q*? y*(t>)
is independent of ¢.

We remark that —Pp + Py is an isomorphism and that L o (—id) o L™ o Pp = —Pp.
Define Q := L™'(B; D) and observe that 0 € Q. Using (D2) and Lemma 2.21, we calculate
deg(—Pp + Py, BiRY, 0) = deg(—Pp + Py, B1D + B1H,0) = deg,(—id, Q,0) = —1.
This proves (2.21) and finishes the proof. ]

Summing up, Proposition 2.17, Proposition 2.18 and Proposition 2.22 and its proofs
imply
2.23 Theorem. Suppose that “deg” is a degree that satisfies (D1)—(D3). Suppose
that Q@ C RN is open and bounded, f € C(Q,RY) and y € RN\ f(9Q). We set p :=
dist(y, f(0)). Then there are g € C(Q,RN) N C®(Q,RY) and a regular value z €
RN\ g(09) of g such that || f — Illc@rny < p/3 and |y — 2| < p/3. For all those g and =
it holds true that g=*(2) is a finite set and that

(2.22) deg(f.Qy) = Y sgnJy(x).

x€g=1(2)

2.3 Existence

2.3.1 Regular Values and Functions in C?

2.24 Definition. Suppose that Q C R¥ is open and bounded, f € C*(Q,RV)NC(Q,RY)
and y € RV\ f(00 U Ky). We define

deg(f,Q,y) = Z sgn J¢(x).

zef~y)
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2.25 Remarks. (a) Lemma 2.11 implies that the sum mentioned above is finite.
(b) If f~1(y) = @, then deg(f,Q,y) = 0 because the sum is empty.

We are interested in extending Definition 2.24 to singular values y of f. Suppose that
p = dist(y, f(9Q)) > 0. Since f(K;) has zero measure in RY there are regular values in
the ball B,(y). It is natural to define the degree deg(f, 2, y) by deg(f, 2, 1) if y1 € B,(y)
is a regular value of f. But one has that prove that this definition does not depend on
the selection of y;, and for this we need some tools.

2.26 Lemma. Suppose that 2, f and y are as in Definition 2.24. For 6 > 0 suppose
that ns is given by Definition 2.15. Then there is 69 > 0 such that

(2.23) deg(f,Q,y) = /9775(f(x) —y)Js(z)dx for all § € (0, dp).

Proof. If f~'(y) = @ then pick 0 < &, < dist(y, f(Q)). It follows that ns(f(z) —y) =0
for all z € Q and 6 € (0, y] because supp(n;) = Bs. Therefore, (2.23) holds true.

Suppose that f~'(y) = {1, 2s,...,2, }. We find 71 > 0 such that the closed balls
B, () C Q are mutually disjoint and each of the restrictions of f to B, (z;) is a
diffeomorphism with image Vj, an open neighborhood of y. It follows from the continuity
of Jy that

(2.24) sgn Jy(z) = sgn Jy(zy) for all x € B, (zg).

There is 5 > 0 such that B,,(y) C i, Vi and f~Y(B,(y)) C U;_, n (x). We
define the open sets Wy := f~1(B,,(y)) N B,,(zx). Then dlst(y, F(Q\ UZ W) > re. If
§ < 8o :=ryand z € Q\Jp_, Wi then f(z) —y ¢ B; and n5(f(z) —y) = 0. Hence (2.24)
implies that

(2.25) An&ﬂ)—ny =§j%mnxk/ ns(f(2) = y)|J; ()] da

We observe that J;_, = J;. Moreover, f is a diffeomorphism of W}, and B,,(y), and
therefore f — y is a diffeomorphism of W and B,,. It follows by a change of variables
and from By C B,, that

‘Amuw—wmmm:/’m@m:L

Br,
Using this, (2.25) implies (2.23). O

2.27 Definition. Suppose that A = ((a;;)) € R¥*N is a matrix. By definition, the
cofactor det;;j(A) is (—1)""7 times the determinant of A after taking away the i-th row
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and the j-th column:

arip aiz 0 A15-1 arj+1 -0 AN
21 Qg2 -+ G251 azj+1 -+ Q2N
o i+J
det(A) == (=1)"7det [ ai—11 @12 -+ QGim1jo1 Gicij41 cc GioiN
ij
Ai+1,1 Gi+1,2 -0 Qipl-1 Gip15+1 0 Qi4l,N
an1 anz -+ GNj-1 ANjGj+1 " OGNN

2.28 Lemma. Suppose that Q@ C RN is open and f € C*(Q,RY). We define d;;(z) :=
det;j(Df(x)). Then

N
Zajdij(a;):o foralli=1,2,...,N and x € Q.
j=1

Proof. In this proof the symbol = denotes omission of the object represented by the dot.
Fix ¢ and denote

gk :: ak(f17f27"'7fi7"‘7fN)T‘
It follows that o
dlj(gj) = (_I)H—] det(gtha cee 7.§Tja s 7gN>

The determinant is linear in every column. It follows that

(2.26) Odij(x) = (=1)"™ ) “det(gr, g2, Gis- - jGks -, N)-
k#j

We set
crj = det(0jgk, 91,92, -+ Gjs -+ Thr - - -, N )-

Since f € C?*(Q,RY), we have 9yg; = 0;gx. This implies that c;; = cj;. Interchanging
two neighboring columns in a determinant just changes its sign. Therefore,

(—1)k710kj, k< j,

2.27 det(g1, gos ooy Giree ey OiGhs s GN) = ,
(2.27) et(g1, 92, -, iGks - GN) {(—1)’“‘2%, k>

We define o4; = 1 for k < j, 0j; = 0 and oy; = —1 for £ > j. With this notation (2.26)
and (2.27) imply that

N

(1) 05y () = Y (=) ey + (=1 Pey = ) (=D owge.

k<j k>3 k=1
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Adding terms up with respect to 7 we obtain

N

N
()" 0idi(x) = > (=) Hoye
j=1
N
= Z (=1 oen change of index

_ — _ _
== > (=) Hoge Tjk = —Okj Cjk = Ckj-

This implies that the sum is 0. O

2.29 Proposition. Suppose that Q@ C RY is open and bounded, f € C?(Q, RVN)NC(Q, RN)
and y € RN\ f(0R2). Set p := dist(y, f(OR)). If y1,y2 € B,(y) are regular values of f,
then

deg(f? Q7 Z/l) = deg(f7 QJ y2)7
where the degree “deg” is given by Definition 2.24.

Proof. Using Lemma 2.26, it is sufficient to prove that

(2.23) [ @) = ) = (1) = ) ) o = 0
for § > 0 small. The idea is to express (ns;(f(x) — y2) — ns(f(x) — y1))J¢(x) as the

divergence of a function v with compact support in 2.
On exercise Sheet 2, no. 2 it was proved that for 6 > 0 the function

w(r) == (y1 — y2)/0 ns(z — (1 —t)y; — tyo) dt.

satisfies

(2.29) divw(z) = ns(x — y2) — ns(z — y1).

Unfortunately, this does not imply that w o f has divergence (ns(f(z) —y1) — ns(f(x) —
y2))Jy ().

We define p; := max{ |y — v, |y — y2| } < p and pick 0 < dy < p — py. For ¢ € (0, ],
t €[0,1] and z € RY with |z — y| > p1 + dp we obtain that

lv — (1 =)y — tya| > |2 —y| — (1 = )|y — | +tly — 12])

> p1+ 60— p1
> 0.
Then w(z) = 0. This shows that
(2.30) supp(w) C B, 15, (y) C B,(y) C RY\ £(0Q) if 6 < dp.
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Fixing § € (0, o] we define d;; :=

By (2.30), dist(supp(w o f)
by 0 gives v € CHRN, RY).

(2.31)

det;;(Df) as in Lemma 2.28 and v € C*(Q, RY) by

= > W (@) (o)

We calculate

N N
07 (x) =D ) o'

i=1 k=1

2))0; f*(x)

f),09) > 0 and hence supp(v) is compact. Extending v to RY

—i—Zw

x))0;d;;(z).

It remains to sum up this expression with respect to j. For ¢ = k in the first sum we

have

Zdw )0 f* () Zdw

Jr()

(developing the determmant of Df(x) by the i-th row). For i < k we observe that

Similarly one obtains that ZN, d

(2.32)

Joining (2.31) Wlth Lemma 2.28 and (2.32) leads to

81f1(x)

o fi1(z)
OLf* (@)
N 81f1+1(33)

Jj=1 81fk_1($)
81 fk ([E)
alkarl (I)

1N (z)

Z (@

= diJy(2)

divo(zx

N
) 2_0if* (@)
7j=1

21

8Nf1(x)

oy Fi-L(z)
On f*(x)
6Nfz+1 (33)

O F*1(2)
8ka (ZL’)
8Nflc+1 (m)

O FN ()

i (2)0; f¥(x) = 0 if 4 > k. Summing up, this implies

forall i,k =1,2,...,N.



Recall that [y dive = 0 since v € CL(RY,RY). Using (2.29) this proves (2.28). O

2.3.2 Singular Values and Functions in C!

2.30 Lemma. Suppose that A, B € L(RY) and A is invertible. If moreover

1
(2.33) IA-B|| < ——
A=

holds true then sgn(det A) = sgn(det B).

Proof. Define v € C([0,1], L(RN)) by ~(t) := (1 — t)A + tB. Observe that y(t) =
(I —(A—=~(t)A 1) A. By (2.33) we know that |[(A —~(¢))A7| < t|]A— BJ||A™| < 1.
The Neumann series implies that v(¢)~! exists and that

V()= AT — (A= y()AT) T =AY (A= (n)ATHE

Therefore, det(y(t)) # 0 for t € [0,1]. The continuity of the determinant and the
intermediate value theorem imply that sgn(det A) = sgn(dety(0)) = sgn(dety(1)) =
sgn(det B). O

2.31 Lemma. Suppose that Q C RY is open and bounded, f € C*(Q,RY) N C(Q,RY)
and y € RN\ f(0Q U Ky). Then there are a compact set K C Q and r > 0 such that for
all g € CHOQ,RY) N C(Q,RY) with

(2.34) If = 9llc@r~y + IDf = Dyllc cery <r
it holds true that y € RN\g(0Q U K,) and

deg(f, 2, y) = deg(g,,y),

where the degree “deg” is given by Definition 2.24.

Proof. Suppose that f~1(y) = {xy,20,..., 2, }. ‘We define the linear isomorphisms
Ay :=Df(zy). There is r; > 0 such that the balls B, (zx) C € are disjoint and that

71
(2.35) |f(z) —y — Aplz — @] < ATAT]
and
(2.30 DA~ Al < S
Afl A
for all k = 1,2,...,n and x € B,,(x}). This follows because y is a regular value of f and

by the continuous differenciability of f. We set W := J;_, B, ().
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We prove that if g € C1(Q, RY) satisfies

,
(2:37) 17 = slleqr ) < G T
and

1
(2.38) sup IDf(z) = Dg()l| gy < T AT
then for all k =1,2,....n
(2.39) sgn Jy(x) = sgn Jp(xy) for x € B,, (1)
and
(2.40) g has precisely one y-point in B,, (zy).

To prove (2.39) we fix k, © € B,,(z), A := Df(x) and B := Dg(x), and calculate,
using (2.36) and (2.38):

1
[Ak = Bl < [|[Ax = Al + |[A = Bl < 7=~
2[4

Lemma 2.30 implies that sgn J,(z) = sgn Jy(xy).
To prove (2.40) we fix k and define ¢: B,, (z;) — RY by

p(x) =z — A (g(x) —y).

It follows that () = = if and only if g(z) = y. If z € B, (}), then we have by (2.35)
and (2.37)

o(x) = ai] < (A ([ Akl — 2] +y = f(2)] + | f(2) = g(2)]) <71,

that is, ©(B,, (z)) C B,, (zx). Moreover,

N | —

IDe(@)ll = 11 = A" Dg(@)l| < A ([|A% = Df ()] + [IDf () — Dg(2)]]) <
by (2.36) and (2.38). For x1, 75 € B, (x;) this implies that
! 1
o) = plan)| < [ IDR((1 =)o + taa)loa — ]| dt < Gy — .
0
Then ¢ is a strict contraction in B,, (x;) and Banach’s fixed point theorem implies that

there is precisely one fixed point of o in B, (x;). This gives (2.40).
We set

r := min { n ! L dist(y, FEO\W)) } .

2maxji_y || A" 4maxi_ |4 2

23



Then 7 > 0. If g € CHQ,RY) N C(Q,RY) satisfies (2.34) for this r and with K := W,
then (2.37) and (2.38) are satisfied and imply (2.39) and (2.40). The definition of r
implies that ¢g~*(y) C W. For k = 1,2,...,n denote by 2 the unique y-point of g in
B, (zy). Hence g~ (y) = {21, 22,...,2n }, and ¥ is a regular value of g, by (2.39) and
because y is a regular value of f. Moreover, (2.39) implies that

n n

deg(f,Q,y) =Y san Jy(we) = D sen Jy(z) = deg(g, 2, y). O

k=1 k=1

The difference of the following proposition with Proposition 2.29 is that we only
suppose that f is in C*.

2.32 Proposition. Suppose that Q@ C RY is open and bounded, f € C*(Q, RVN)NC(Q, RN)
and y € RN\ f(99). We set p := dist(y, f(OR)). If y1,ya € B,(y) are reqular values of f,
then

deg(f? Q7 3/1) = deg(f7 Qu y2)7
where the degree “deg” is given by Definition 2.2/.

Proof. Suppose that K; and r; are given by Lemma 2.31 with respect to y;, i = 1, 2.
Suppose that p; € (0, p) is such that y;,y2 € B,, (y). Smoothing the components of f
and continuously extending them to RY with Theorem 2.9, Proposition 2.16 provides
g € C=(Q,RN) N C(Q,RY) such that (2.34) holds true, where we define K := K; U K,
and r := min{ry,ry }. Moreover, we may assume that

(2.41) ||f_9||c(§,RN) < p—pr
Then p; < dist(y, g(012)). Using Lemma 2.31 and Proposition 2.29 we obtain
deg(fa Qa yl) = deg(ga Qv yl) = deg(gv Qa yQ) = deg(fa Qa y2) L

Using Proposition 2.32 and Sard’s Lemma (Proposition 2.13) we may make the

2.33 Definition. Suppose that Q C RY is open and bounded, f € C*(Q,RN)NC(Q,RY)
and y € RN\ f(092). We set p := dist(y, f(99Q)) and define

deg(fv Qv y) = deg(fv Qa yl)?

where y; € B,(y) is any regular value of f and deg(f,€,y;) is given by Definition 2.24.

2.34 Remark. If f~'(y) = @, then f~'(y1) = @ for y, € R¥\f(K) that satisfies
lyr — y| < dist(y, f(2)). Definition 2.24 and Definition 2.33 imply that deg(f, 2, y) =

deg(f7 Qa yl) = 0.
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2.3.3 Approximation of Continuous Functions
For the extension of this definition to maps that are only continuous we need the

2.35 Proposition. Suppose that Q C RY is open and bounded, f € Q(ﬁ, RY) and
y € RV\f(0Q). We set p := dist(y, f(0)). If 1,92 € CH(QLRY) N C(Q,RY) satisfy
1f = giHC(QRw) < p fori=1,2, then

deg<g17 Qv y) = deg(927 Qv y)7
where “deg” is given by Definition 2.33.

Proof. Put J := [0, 1] and define h(t, z) := (1 —t)g1(z) + tge(z). We will use the notation
hy :== h(t,-). For t € J and z € 02 we have

h(t, ) =yl = |f (@) —yl = ((1 = D)]gi(x) = f(@)] + tlga(2) — f()])
>p—((1=t)p+tp)=0.

Then by Definition 2.33, ¢(t) := deg(h¢, 2, y) is well defined for all t € J. We need to
show that ¢ is constant. Since ¢ takes values in Z it is sufficient to show that

(2.42) ¢ is locally constant on J

since this implies continuity and hence constancy of ¢.
Fix to e J.

Case 1: ;. '(y) = @. Set & := dist(y, hyy (). If |t — to| < 5/(2p), then

|h(t, ) —yl = |h(to, ©) — y| — |h(to, ) — h(t, )]
>0 — |t —to| l91 — galloo

)
>0 — %(Hgl — [llos + [lg2 = flloo)

>0

for all z € Q. Therefore, h; *(y
tefto—0/(2p),to+0/(2p)] N J.

@, and by Remark 2.34 ¢(t) = deg(hs,Q2,y) = 0 for

Case 2: y € hy(Q2) is a regular value of hy,. Write hy'(y) = {z1,22,...,2, }. The
implicit function theorem implies that there are r,s; > 0 and functions z, € C*((ty —
s1,to + 81), Br(w)) such that h;'(y) N Bu(x) = {z(t)} and z(to) = ay, for t €
(to — s1,t0 + s1) and k = 1,2,...,n. Without restriction suppose that the balls B,(zy)
are disjoint and that sgn J, () = sgn Jy, (z) for 2 € B,(xy), using Lemma 2.30.
Define V := |J;_, B-(z4) and § := dist(y, ht, (2\V)) > 0. As in Case 1 one proves that

_ )
7t (y) N (Q\V) = o for [t —to| < %
p
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The function (¢, z) — J,,(2) is uniformly continuous in .J x V, and J,,, has no zero in
V. There is s > 0 such that J,,(z) # 0 for (t,2) € (tg — s2,t0 + 52) X V.
With g := min{sy, s2,6/(2p)} we obtain that

hi ' (y) ={z(t), 22(t), ... za(t) }

and that sgn Jy, (2x(t)) = sgn Jy, (z1) # 0 for all t € (to — p,to +p) N J and all k. Tt
follows for t € (to — p,to + ) N J that

p(t) =Y san g, (24(0) = Y sen Ji,, (1) = o(to)-
k=1 K1

Case 3: y € hy(Q) is a singular value of hy,. Set ¢ := dist(y, hy, (0€2)) and pick a regular
value y; € Bs(y) of hy,. As in Case 2 it follows that there is s > 0 such that y; is a
regular value of h; and that deg(hy, 2, 1) = deg(hy,, Q,11) for t € (to — s,to + s). Taking
s sufficiently small we may assume that |y — y;| < dist(y, hy(0€2)) for these values of ¢.
Using Definition 2.33 we obtain that ¢(t) = ¢(to) if t € (tg — s,to + s). This concludes
the proof of (2.42). O

By Proposition 2.35 and Proposition 2.16 we may make the following

2.36 Definition. Suppose that 2 C R is open and bounded, f € C(,R") and
y € RV\ £(09). Define

deg(f,Q,y) = deg(g,Q,y),

where g € CH(Q,RV)NC(Q, RY) satisfies || f —gll o vy < dist(y, £(0Q)) and deg(g, 2, y)
is given by Definition 2.33.

2.37 Remark. Suppose that €2, f and y are as in the preceding definition. We may
calculate the degree directly with Definition 2.24 (using a regular value) as follows: Set
p = dist(y, f(0Q)) and pick g € C1(Q, R¥)NC(Q,RY) and a regular value z € RV\g(99)
of g such that || f—gllcc < p/3 and |y—z| < p/3. It follows that || f —g||e < dist(y, f(002))
and

ly = z[ < p/3 < 2p/3 < dist(y, f(9Q)) = [|f = gllo < dist(y, g(O)).
By Definition 2.33 and Definition 2.24 we obtain
(2.43) deg(f, 2, y) = deg(g, 2, y) = deg(g, 2, 2).
2.38 Theorem. The degree given in Definition 2.36 satisfies (D1)—(D3).

Proof. (D1) Since “id” is differentiable and 0 a regular value, Definition 2.24 implies the
claim.

(D2) Define A := Q\(,U€y) and p := dist(y, f(A)) > 0. By extension and smoothing
(Theorem 2.9 and Proposition 2.16) we find g € C*°(Q,RY) N C(Q,RY) and a regular
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value z € R\ g(99) of g such that || f — gllee < p/3 and |y — 2| < p/3. Observe that
002 C A implies p < dist(y, f(92)). Therefore, Remark 2.37 implies

(2.44) deg(f,Q,y) = deg(g, 2, 2).

Since g7'(2) N A = @, Definition 2.24 gives

deg(g,9, 2) = Z sgn Jy ()

zeg~1(2)
(2.45) = Z sgn J,(z) + Z sgn Jy(x)
z€g—H(z)N z€g—1(2)NQ2

= deg(Q? Qlu Z) + deg(.ga QQ? Z)

The inclusions 0€2; C A imply that p < dist(y, f(9€2;)) for i = 1,2. Using Remark 2.37
once more we obtain

(2.46) deg(f, Qi y) = deg(g, L, 2) for i =1,2.

Joining Equations (2.44), (2.45) and (2.46) we conclude.

(D3) Suppose that J := [0,1], h € C(J x Q,RY) is a homotopy and y € C(J,RY)
is such that y(t) ¢ h(t,00Q) for all t € J. Define p(t) := dist(y(t), h(t,00)) > 0 for
t € J. We prove that py := minp(J) > 0. By contradiction, suppose that there
is (t,) € J such that p(t,) — 0 as n — oo. For every n there is z,, € 9Q with
ly(tn) — h(tn, z,)| < p(tn) + 1/n, by the definition of p. Since 92 and J are compact,
passing to a subsequence we may assume that ¢, — t* € J and x,, — z* € 92 as n — 0.
The continuity of y and A imply that

0< plt%) < Iy(t") = A(E"a")] = T Jy(ta) — hltn, )] < Jim (p(t) + 1/) =,

n—oo

a contradiction.
By extension and smoothing we find H € C**(RV*!, RY) such that ||h—H || o juqmn) <
po/4. As usual, we write hy := h(t,-) and H, := H(t,-). It follows that

P )
17 — Hillcpyy < ZO < po < p(t) = dist(y(t), :(092))
and, by Definition 2.36,

(2.47) deg(hs, 2, y(t)) = deg(Hy, 2, y(t)) for all t € J.

Observe that

30

Since H is uniformly continuous in J x Q and y is uniformly continuous in J there
is & > 0 such that ||Hs; — Hillo@gry) < po/4 and [y(s) —y(t)| < po/4 for s,t € J with
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|s —t| < 0. Fix such s,t and observe that V' := B, /4(y(s)) N B,,/4(y(t)) is open and not
empty. Sard’s Lemma implies that A := H,(Kp,) U H;(Kp,) has zero measure, that is,
RM\ A is dense in RY. In consequence, there is z € V\A4, i.e. 2 € V is a regular value of
H, and of H,.

Observe that (2.48) yields

2= yls)] < 22 < 20 < dist(y(s), H,(00).
Now Definition 2.33 yields
(2.49) deg(Hs, 2, y(s)) = deg(Hs, 2, 2).
Similarly we obtain
(2.50) deg(Hy, 2, y(t)) = deg(Hy, (2, 2).

From (2.48) and |z — y(s)| < po/4 we infer dist(z, H,(0€2)) > 2. Hence the inequality
1Hs — Hillc@grvy < 5 (definition of d, s and t) and Proposition 2.35 imply that

(2.51) deg(Hy, 2, z) = deg(Hy, 2, 2).

By the preceding equations we deduce

deg(he, Qy(s) = deg(Ho 2 y(s)), by (247),
= deg(Hs, 2, 2), by (2.49),
(2.52) = deg(Hy, 2, 2), by (2.51),
- deg(Htany(t))7 by (25())’
Define ¢: J — Z by ¢(t) := deg(hs, 2, y(t)). Equation (2.52) implies that ¢ is locally
constant, that is, ¢ € C(J). Therefore, ¢ is constant on J. O
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3 Properties and Applications of the
Degree

3.1 Basic Properties and Applications
For N € N we define
(3.1) Ay :={(f,Q,9) | 2 C R open and bounded, f € C(Q,RY), y € R\ f(0) },

the set of admissible triplets in dimension N. Definition 2.36 defines the degree as a map
deg: Ay — Z with the properties (D1)-(D3).

3.1 Proposition. The degree satisfies the following additional properties:

(D4) deg(f,Q,y) # 0 implies that f~(y) # @.

(D5) deg(-,Q,y) and deg(f, 2, -) are constant functions in B,(f; C(Q,RY)) and B,(y; RY),
respectively, where p := dist(y, f(02)) > 0. Moreover, deg(f,$2,-) is constant in
every connected component of R\ f(0).

(D6) deg(g, 2,y) = deg(f, %) if gloa = [flog-
(D7) deg(f,Q,y) = deg(f,Q,y) for all open subsets Q0 of Q such that y ¢ f(Q\Q).

Proof. (D4) We showed at the beginning of the proof of Proposition 2.18 that f~!(y) = @
implies that deg(f,Q,y) = 0.

(D5) The first claim was proved on Exercise Sheet 2, N°1. For the second claim, let
y1 and yo belong to the same connected component. There is a path y(t) from y; to
yo in RN\ f(09) since this set is locally path connected. Property (D3) implies that
deg(fv Qa yl) = deg(f7 Q> y2)

(D6) This is a special case of Exercise Sheet 2, N°1(ii).

(D7) This is a consequence of properties (D4) and (D2), where Qy = @. O

3.2 Theorem (Brouwer). Suppose that K C RY is compact, convex and not empty, and
suppose that f: K — K is continuous. Then f has a fized point. The same holds true if
K is homeomorphic to a subset of RN that is compact, convex and not empty.

Proof. We prove that 2 — f(x) has a zero in K. First suppose that K = B, for r > 0. If
there is € S, such that f(x) = x then we conclude. If not then z — f(x) # 0 for all
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r € S,. The homotopy h(t,z) = (1 —t)r +t(x — f(x)) =z —tf(z) of idg_toidg — f
satisfies for z € S, and t € [0,1):

|h(t,z)| = || = t|f(z)| = (1 = t)r > 0.

For t =1 and x € S, we have that h(t,z) = x — f(z) # 0. Then 0 € B,, (D3) and (D1)
yield deg(id — f, B,,0) = 1. Hence (D4) implies that = — f(x) = 0 for some z € B,..

More generally, if K C RY is compact, convex and not empty we extend f to RY
continuously, as in Theorem 2.9, and denote the extension by g. The convexity of K
implies that g(RY) € K. We find » > 0 sufficient large such that K C B,. Hence
g(B,) € K C B,. By the first part there is a fixed point = of g in B,, that is in K. Since
glk = f, x is a fixed point of f.

Suppose that K a metric space, f: K — K continuous, A C R" compact, convex and
not empty, and suppose that ¢: K — A is a homeomorphism. Then g := ¢ o fop ! has
a fixed point z in A by the preceding paragraph, and hence ¢~ !(z) is a fixed point of f:

fle™Hx) = (¢ opo fop™)(z) = (¢ og)(z) = ¢ '(2). O

3.3 Definition. Suppose that X is a metric space and A C X. A retraction of X to A
is a continuous map ¢: X — A such that ¢|4 = id4. In this case A is a retract of X .

3.4 Example. ¢: RY — By, given by

x, lz| <1,
w@%z{i

2]’ |ZE| > 1,

is a retraction of RY to Bj.
3.5 Corollary (to the theorem of Brouwer). There is no retraction of B, to S,.

Proof. Arguing by contradiction, suppose that ¢ is a retraction of B, to S,. Then —¢
has a fixed point x in B, by Theorem 3.2. Since ¢(B,) C S, it follows that x € S,., that
is, x # 0 is also a fixed point of ¢. It follows that x = —p(z) = —z. Contradiction! [J

3.6 Proposition (Hedgehog Theorem). Suppose that N is odd, @ C RY open and
bounded such that 0 € Q, and f € C(0Q,RY). Then there are x € 00 and \ € R such
that f(x) = Ax.

Proof. We extend f continuously to © using Theorem 2.9. Since N is odd we have
deg(—id, ©2,0) = —1. If deg(f,Q,0) # —1 we define the linear homotopy h(t,z) =
(1 —1t)f(x) — tx from f to —id. By (D3) there are ¢ty € [0,1) and zy € 2 such that
h(to, z9) = 0. We obtain
lo
S
If deg(f,2,0) = —1, use the linear homotopy from f to id, deg(id, 2,0) = 1 and a similar
argument. O

0-

30



3.7 Remark. The name given to the previous theorem is to be undestood as follows:
One cannot comb a hedgehog without a bald spot. To explain: For any r > 0 the ball
B,R? symbolizes the hedgehog. The spines on S,R? are given by a continuous vector field
f: S, — R3 A bald spot is a zero of f. To comb means to put the spines into a position
tangential to S, that is, such that f(z) -z = 0 for all x € S,.. If f is continuous and
tangential to S, by Proposition 3.6 there are xy € S, and A € R such that f(xq) = Azo.
Since f(xg) is tangential to S,, A = 0 and hence f(z() = 0.

3.8 Example. The hedgehog theorem is not valid in even dimension. For example, for
N = 2 the vector field f on S; given by

o= 2

is continuous, tangential and has no zero.
3.9 Proposition. Suppose that f € C(RYN,RY) satisfies
flz)- =

]

(3.2)

— 00 as |x| — oo.

Then f(RYN) = RY.

Proof. Fix y € RY and define h(t,z) := (1 —t)f(x) + tz. Suppose that r > 2|y| + 1 is
large enough such that

M > 20yl + 1 for all x € S,.

|z
We calculate for x € S,:
(hit,2) —y) 5 = (1= ) f(x) -2+ —ya
= (L=0)Qly[+ Dr+tQ2lyl + Dr — [ylr = (ly| + 1)r > 0.

By (D1) and (D3) this implies that deg(f, B,,y) = deg(id, B,,y) = 1, that is, f~'(y) N
B, + 2. O

3.2 Varying the Space

Suppose that £ is a Banach space of finite dimension. Denote by Apg the set of admissible
triplets (f,€),y) where Q C E is open and bounded, f € C'(£2, E) and y € E\ f(01).
If E has the base A := {x1,2s,..., 7y }, we define the linear map ¢: E — RY by

o(xg) = ex.

By definition, the elements e, form the canonical base of RY. Tt follows that ¢ € L(E,RY)
is a linear isomorphism and a homeomorphism of £ and RY. We call ¢ the canonical
isomorphism between E and RN with respect to the base A.
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3.10 Proposition. Suppose that E is a Banach space with dim = N < oo and let ¢
denote the canonical isomorphism between E and RN with respect to a base of E. Suppose
that (f,Q,y) € Ag. Then (o fop™ p(Q),p(y)) € Ay and we define

degp(f, Q2 y) :=deg(po fop™ o(Q),0(y)).

Then degy does not depend on the selection of the base of E and satisfies the properties
(D1)~(D7), replacing RN by E.

Proof. Ts clear that (po fop ! p(Q),¢(y)) € Ay because ¢ is a homeomorphism and
I(p(R2)) = p(0). Suppose that Ay := {x1,x9,...,2x5 } and Ag := {y1,¥2,...,yn } are
two bases of I, and let ¢; and ¢, denote the canonical isomorphisms of £ and R¥
with respect to the bases A and I'. We define A := @y 0 ;' € L(RY). Suppose that
Q1 := 1(Q) and Qy 1= () = A(). Fix g; € C1(Q,RY) N C(Q1,RY) and a regular
value z; of g; such that with g, := Ao g; 0 A7 and 2, := Az; we have

dist (902' (y) ) 89@)

(3-3) ||90iofoé0¢_1 _giHC(STi,RN) < 3 )
dist(p;(y), 0€;

(3.4 foily) - = < TUEW O,

for + = 1,2. Remark 2.37 implies that

(3.5) deg(i o f o ;" 0i(2), wily)) = deg(gi, U 2).

Moreover, z, is a regular value of gs.
Since g ' (22) = A(g7 ' (21)),

sgn Jy, (Ar) = sgndet(Dga(Az)) = sgndet(ADg; (z)A™") = sgn J, (x)
if ¥ € g;'(21). This yields

deg(gs, Qa, 20) = Z sgn Jg, ()

z€gy ' (22)

= Z sgn J92 (:E)

z€A(g; " (1))

(3.6) = > sgnlJ,(Az)

z€g; ' (21)

= D sendy(w)

z€gy ' (21)
= deg(gl, Ql, 21>.
Combining equations (3.5) and (3.6) we obtain that
deg(1 0 f o1, ¢1(Q), p1(y)) = deg(p20 f 095", 2(Q), 2(y))-

Proving that this degree satisfies properties (D1)—(D7) is only a cuestion of applying
the definition and the same properties for the usual degree. O
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3.11 Proposition. Let E denote a Banach space of finite dimension and F a subspace
of E. Suppose moreover that Q C E is open and bounded, g € C(Q, F), f € C(Q, E)
is given by f = idg — g and y € F\f(0R2). Denoting ¥ := QN F it holds true that
f)CF, (flg,Q,y) € Ap and

(37) degE(f’ Q7 y) = degF(f|W7 Q/a y)
Proof. Denote h := f|g € C(Y, F). Since
(3.8) 9rY C QN F,

it follows that (f|g, ', y) € Ap. By Proposition 3.10 we may assume that £ = RY and
F=RM x {0} with M < N.
First suppose that g € C'(Q,RM) N C(Q, RM) and y € RM\ f(99) is a regular value
of f. By the definition of f it follows that f~ ( ) € RM and hence that
N

(3.9) fHy) =h" ().
For x € f~!(y) we have a representation of D f (x) by a matrix
Iy — B C

3.10 A=

(3.10) ("7 .0
where ‘

B = (0;9'(2))ije(1,2,..:) € RMM
and '
C:=(09'(x ))ze{l 2,.., M} je{M+1,M+2,.,N} € RMX(N=M),

Clearly

(3.11) Jr(x) = det(A) = det(Iyy — B) = Jp(x).

This implies that
degp(f,y)= >  sgndp(x)= > sgny(z) =degp(h,Q,y).
vef1(y) zeh=1(y)

In the irregular case we set p := dist(y, f(9€2)) and approximate g by a map ¢, €
CHQ,RM) N C(Q,RM) such that ||g — g1]|c < p/3. Define f; :=id — g; and hy == fi|g-
It follows that || f — fillee < p/3. By (3.8) we obtain

1h — Bl < g < dist(y, h(9)) /3.

Fix a regular value y; € RM of h; such that |y — y1| < p/3, using the theorem of Sard.
The formula (3.11), applied to f; and h; in place of f and h, implies that y; is a regular
value of f;. Moreover,

ly— ol < £ < dist(y, h(99))/3
Remark 2.37 and the preceding equations yield

degE(fﬂ Qa y) = degE(fh Q7 yl) = degF(h17 Q/a yl) = degF(h7 Q/a y)

and we conclude. O
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4 The Degree in Infinite Dimensions

4.1 Introduction

In this section we will extend the topological degree to maps in Banach spaces. The
motivation is that, to prove existence of solutions of differential equations we have to
allow infinite dimensional spaces.

4.1 Example. Suppose that f € C(R,R) is bounded. Consider the ordinary differential
equation

(4.1) at) = f(u(t)),  u(0) =wuo

in an interval J := [0, a], for ug € R. Write @ := du/dt. If f is Lipschitz continuous then
Picard-Lindel6f’s Existence and Uniqueness Theorem applies.

Without Lipschitz continuity of f it still holds true for u € E := C(J,R) that u is a
solution of (4.1) if and only if u is a solution of

(4.2) u(t) = ug +/0 f(u(s))ds.

We define K: E — FE by

K (u)(t) := ug +/0 f(u(s))ds.

Then u € E is a solution of (4.2) if and only if u is a fixed point of K, or equivalently, a
zero of id — K.
Suppose that M :=sup f(R). If K(u) = u, then

lu(t)| < |ugl + Ma for t € J,

that is, ||ul|z < r := |uo| + Ma. Hence all fixed points of K are in B,E. To prove that
there is a solution of (4.1) we need to define a topological degree for the map id — K in
E, and prove that deg(id — K, B,;.,0) # 0 for € > 0.

The principal idea is to define a degree for maps of the type id — K in Banach spaces,
where K has a “thin” image A in E. Then one restricts id — K to a subspace of finite
dimension that approximates A, and uses the idea of Proposition 3.11.
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4.2 Compactness in Banach Spaces

4.2 Definition. Suppose that X is a metric space. A subset A C X is relatively compact
if A is compact. A is precompact if for all € > 0 there are points x1, xs, ..., x, € X such
that

AC | B.(x).

k=1

4.3 Remark. Suppose that XY are metric spaces, A C X and f: X — Y is continuous.

(a) A is relatively compact if and only if every sequence in A has a subsequence that
converges in X.

(b) If A is relatively compact, then f(A) is relatively compact.
(c) If X is complete, then A is relatively compact if and only if A is precompact.

4.4 Lemma. Suppose that E is a normed space, A C E, X C E is finite and ¢ > 0 is such
that A C X + B.. Ife; > ¢ then there is a finite set Y C E such that conv(A) CY + B,,.

Proof. Suppose that © € conv(A). Then there are n € N, A\, € [0,1] and z; € A for
k=1,2,...,nsuch that > 7 _ Ay =1and x = > ,_, \yxy. By the hipothesis we can fix
yr € X such that |z, —yx| < e for k =1,2,...,n. It follows that

T = Z AU + Z (g — yp) C conv(X) + B..
k=1 k=1
Since = € conv(A) was arbitrary we obtain
(4.3) conv(A) C conv(X) + B..

It is clear that conv(X) is compact because X is finite. Hence there is a set finite Y C
such that conv(X) CY + B.,_.. With (4.3) this implies

conv(A) Cconv(X)+B. CY + B, .+ B-CY + B,,. O

4.5 Proposition. Suppose that E is a normed space and A C E precompact. Then
conv(A) is precompact.

Proof. Suppose that € > 0. Since A is precompact, there is a finite set X C E such that
A C X +DB,/;. By Lemma 4.4 there is a finite set Y C E such that conv(A) CY+B.. O
4.3 Compact Operators

4.6 Definition. Suppose that E, F are Banach spaces, A C F and f: A — F is
continuous. We say that f is compact if f(A) is relatively compact. Denote by K(A, F)
the set of continuous compact operators (maps) from A to F. f is completely continuous

35



if f is continuous and if f(B) is relatively compact for all bounded subsets B of A. f
is of finite dimension if there is a subspace of finite dimension in F' that contains f(A).
Denote the set of continuous maps of finite dimension from A to F' by F(A, F).

Suppose that A C E is bounded and closed and f: A — F. f is called proper if
f7YK) is compact for every compact subset K C F.

4.7 Proposition. Suppose that E, F' are Banach spaces and A C E is closed and bounded.
Then

(a) F(A, F)NK(A, F) is dense in IC(A, F') with respect to the supremum norm.
(b) If f € K(A,E), then I — f is proper.

Proof. (a): Suppose that f € (A, F') and € > 0. There is a finite set Y C F such that
f(A) CY + B., because f(A) is compact. Define maps ¢,,v,: f(A) — R by

oy(x) == max{0, e — |z —y|} foryeY

and

o 902/(55)
ole) = oy

Clearly ¢, is continuous. Since Y + B. covers f(A), the sum is positive in f(A). Since

the sum is finite, v, is continuous. For all y € Y and = € f(A) we have ¢, (x) € [0, 1]
and Zer Py(x) = 1.
We define g: A — F by

g(x) ==Yy, (f(x))y.

yey

Clearly, g is continuous. ¢ has its image in [Y], the subspace of finite dimension generated
by Y, that is g € F(A, F). For x € A we obtain from the properties of 1,

lg(x) = f(z)]lr =

S, (f@) (g - f(@))

yeY

. <D b (f@)ly — f(@)llr

yey

< Z¢y(f(x))€ =&

yey

It follows that sup,c4||f(z) — g(z)||r < e.

(b): Suppose that K C F is compact, and suppose that (z,,) C (I — f)}(K). Write
Yn == (I — f)(z,) = x, — f(x,). Since (y,) € K and (f(x,)) is relatively compact,
passing to a subsequence we may assume that y, — y and f(z,) — z as n — oo. It
follows that x, = y, + f(z,) = y + 2 as n — co. We conclude using that (I — f)~!(K)
is closed. [l

4.8 Proposition. Suppose that E, F' are Banach spaces, A C E is closed and bounded,
and suppose that f € KC(A, F). Then there is an extension g € K(E, F) of f such that
9(E) € conv(f(A)).
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Proof. By Remark 4.3(c) relative compactness and precompactness coincide in F'. We
find the extension g such that g(E) C conv(A) with Tietze’s Theorem, Theorem 2.9.
Proposition 4.5 implies that conv(f(A)) is relatively compact. Therefore, g € IC(E, F).

m

4.9 Lemma. Suppose that E, F are Banach spaces, A C E is closed and bounded, and
f: A— F continuous and proper. Then f is a closed map.

Proof. Suppose that B C A is closed, (y,) € f(B) such that y, — y in F. There is
(x,) € B such that f(z,) = y,. Since f is proper and { y,, }>2,U{y} compact, { z,, }32, is
relatively compact. Passing to a subsequence suppose that z,, — x in E. B closed implies
that x € B, that is, f(z) € f(B) and y,, = f(x,) — f(z) =y. Hence y € f(B). O]

4.4 The Leray-Schauder Degree

4.10 Definition. Suppose that F is a Banach space. Denote by Ag the set of admissible
triplets (f,Q,y) where Q C F is open and bounded, f = I — K, K € K(Q), F) and

y € E\f(09).

4.11 Remark. Definition 4.10 is consistent with the Definition of Ag for Banach spaces
FE of finite dimension given in Section 3.2, because in this case I — f is always compact,
that is, f = I — K with compact K.

If (f,Q,y) € Ap, f = I — K with K € K(Q,E), we set p := dist(y, f(092)). By
Proposition 4.7(b) f is proper, and therefore f(0€2) is closed by Lemma 4.9. Hence p > 0.
Proposition 4.7(a) provides us with K, € F(Q, F) such that sup, g/ K (z) — K1 (z)| & < p-
If F is a subspace of E of finite dimension with K;(Q) C F and y € F, then we set
Qr =QNF, fi ;== (I — Ki). In consequence, (fi|q,2r,y) € Ar.

4.12 Lemma. In the preceding situation deg(fi|q,,2r,y) does not depend on Ky nor
F.

Proof. Suppose that K; € F(Q, E) is such that sup, g| K (z) — K;(x)||r < p, suppose
that F; are subspaces of E of finite dimension such that K;(Q) C F; and y € F}, and
define Q; := QN F; and f; := (I — K;), for i = 1,2. Denote Fy := F}+ Fy and g := QN Fp.
Proposition 3.11 yields

(4.4) deg(fi|m> Qo,y) = deg(f;
for i = 1,2. Since 09y C 02 N Fy, we have dist(y, f(0)) > p. Put h(t,z) :=
(1 —1t)fi(x) +tfo(x). If t € [0,1] and = € Iy, then
[h(t, 2) = yll = (1 = O)(f1(z) = f(2)) + t(falx) = f(z)) + f(2) -y
> [If(z) =yl = (A= fr(@) = f@)]| +tllfo(x) — f(@)]])

> p— ((1 =) Ki(z) — K(2)| + tl| Kx(2) — K(2)]])
> 0.

Q0 Qia y)
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In consequence, y ¢ h(t,08) for all ¢ € [0, 1]. This implies that

(45) deg(fl ’970’ QOv y) = deg(fﬂﬂioa QOv y)?

and together with (4.4) we conclude. O
4.13 Definition. In the situation of Lemma 4.12 we define the Leray-Schauder Degree
by

(4.6) deg(f,Q,y) == deg(filg, O, y)-

Without proof we formulate the

4.14 Theorem. For a Banach space E the map deg: Ag — Z has the properties (D1)-
(D7), where h in (D3) has the form h = Ig — H, that is, h(t,x) = x — H(t,z), and
H e K£(]0,1] x Q, E).

4.15 Remark. One can prove that deg is the unique map Ar — Z with properties
(D1)—(D3).

4.16 Theorem (Schauder). Suppose that E is a Banach space, A C E is not empty,
bounded, closed and convex, and K: A — A compact. Then K has a fized point.

Proof. By Proposition 4.8 we can extend K to E by K; € K(FE, E) such that K;(F) C A.
Selecting r > 0 such that A C B, E, we define the continuous operator H (¢, ) := tK; ()
for (t,z) € [0,1] x B.E. If (t,) € [0,1] and (z,,) C B,, then by the compactness of K;

in B, we may assume that (¢,) and (K;(x,)) converge, after passing to a subsequence.
It follows that (¢, K (z,)) converges. This implies that H is compact. For the homotopy
h:= 1 — H it holds true that 0 ¢ h(t,S.E) if t € [0,1] because tK;(z) # x if z € S, E
and t € [0,1]. Properties (D3) and (D1) yield

deg(I — K4, B,,0) = deg(I, B,,0) = 1,

and hence that K; has a point fixed z in B,. Clearly o € A, and therefore z, is a fixed
point of K. O

4.17 Theorem (Schéfer). Suppose that E is a Banach space and suppose that K: E — E
is completely continuous. Define

A={xe FE|x=tK(x) for somet € [0,1]}.
If A is bounded then K has a fixed point.

Proof. If A is bounded then there is 7 > 0 such that A C B,. The restriction of K to B, is
a compact operator. As in the proof of Theorem 4.16 we obtain that H: [0,1] x B, — E,
given by H(t,z) := tK(x), is compact. If ¢ € [0,1] then = # tK(z) for z € S, and
therefore 0 ¢ h(t,S,), where h := Ip — H. In consequence

deg(] - K7 BT70) = deg([7 BT‘70) = 17

that is, K has a fixed point in B,. m
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4.18 Theorem. Suppose that E is a Banach space, F' a closed subspace of E, 2 C E is
open and bounded, K € K(Q, F) and y € F is such that (f,Q,y) € Ag for f :=1—-K.
Set Q' :=QNF. Then (fle, Y, y) € Ar and

degE(f’ Q7 y) = degF(f|W7 Qlu y)

Proof. Suppose that K, € F(Q,F) is an approximation such that |K — K|l <
dist(y, f(9€2)). Suppose moreover that Fy is a subspace of F' of finite dimension such
that it contains the image of €2 under K; and y. Then

deg(f,Q,y) = deg(florm, 2N F1,y) = degp(fla, ¥, y)

by Proposition 3.11. [

4.5 The Degree of a Linear Operator

We calculate the degree of I — K if K is a linear completely continuous operator and
I — K is a Banach space isomorphism. This case is important in applications.

4.19 Definition. A linear completely continuous operator is called a compact linear
operator. Denote by L.(FE, F') the linear and completely continuous operators from E
into F' if E/, F' are normed spaces.

4.20 Reminder. Suppose that E is a real Banach space and L € L(E) a bounded linear
operator in E. The resolvent set p(L) of L is the set of values A € R such that A\l — L is
bijective. By the open mapping theorem, (Al — L)™' € L(E) in this case. The spectrum
o(L) of L is the complement of p(L) in R. It always holds true that o(L) is compact and
contained in Bjr(0; E). A number A € R such that N'(A\] — L) # {0} is an eigenvalue
of L.

4.21 Proposition. Suppose that E is a Banach space of infinite dimension and K € L(F)
compact. Then the following properties are satisfied:

(a) o(K) is at most countable and contains 0. If o(K) is infinite, then it consists of 0
and a sequence of eigenvalues that converges to 0.

(b) For all A € o(K)\{0} there are unique closed subspaces N*(\) and R*(\) that are
invariant under K such that E = N*(X\) @ R*(A), dim(N*(X)) < 0o, o(K|y+(n)) =
{A} and o(K|g+n) = o(K)\{\}. N*(X) is called the generalized eigenspace of
the eigenvalue A. The operator (A — K): R*(A) — R*(\) is a Banach space
isomorphism.

(c) If \,u € o(K)\{0} are distinct, then N*(u) C R*(N).

Sketch of proof. Item (a) is standard and can be found in texts on functional analysis.
The idea for item (b) is to show, as in the finite dimensional case, that for A € o(K)\{0}
there are minimal k(\), £(\) € N such that N'((AM — K)*™) = N (A — K)*™+1) and
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R(A — K)N) = R((M — K)*™*1), It then follows that k(A\) = £()\). One defines
N*(A) := N((M = K)¥N) and R*(\) := R((M — K)*™) and proves the stated properties.

To show (c) suppose that A, u € o(K)\{0} are distinct and assume that z € N*(u).
By the decomposition E = N*(\) @ R*(\) there are unique elements y € N*(\) and
z € R*(A\) such that * = y + 2. Set L := (ul — K)*®. Then 0 = Lz = Ly + Lz.
Obviously, N*(\) and R*(\) are invariant under L. This implies that Ly € N*(\) and
Lz € R*(\), that is, Ly = Lz = 0. Since X is the unique eigenvalue of K in N*()), L is
injective in N*()\), and therefore y = 0. Hence z = z € R*(\). O

4.22 Remark. In the preceding proposition, if A € o(K)\{0}, then dim N’ (A — K) is
called the geometric multiplicity and dim N*(\) the algebraic multiplicity of \.

4.23 Remark. If K € L.(F) and I — K is injective, then 1 is not an eigenvalue of K.
Since all elements of o(K)\{0} are eigenvalues, 1 ¢ o(K). This implies that [ — K is a
Banach space isomorphism.

4.24 Theorem. Suppose that K € L.(E) is such that I — K is injective. Let m denote
the sum of the algebraic multiplicities of the eigenvalues X > 1 of K (these coincide with
the negative eigenvalues of I — K). Then

deg(I — K, By, 0) = (—1)".

Proof. By Proposition 4.21(a) there is only a finite number Ay, Ao, ..., A, of eigenvalues
of K larger than 1. According to Proposition 4.21(b) we form the spaces N*();) and
R*(A\;) and we denote

i=1 i=1

We need to show that
(4.7) E=N&R.

To prove RNN = {0}, suppose that 2 € RNN. There are x; € N*(\;), a; € R, such that
r =Y a;x;. By Proposition 4.21(c) .., a;z; € R*(A1). Moreover, x € R C R*(\y).
Hence a1y =z — o, a;z; € R* (M) NN*(A\1) = {0}. Similarly one shows that a;x; = 0
for i = 2,...,n. It follows that x = 0. To see E C N + R, assume z € E. There
are z; € N*(\), yi € R*(\;) such that x = x; +y; for all i = 1,2,...,n. Using
Proposition 4.21(c) we obtain for every k € {1,2,...,n}:

x—ixi =11 —xy —Zmi = Ui —in € R*(A).
i=1 ik itk

Hence z — >, ; € R. Since )., x; € N, this proves z € N + R.
It is clear from Proposition 4.21 that A" and R are invariant under K and that

(4.8) o(Kly) C (1,oo)  and oK) C (o0, 1).

40



Denote by P, the pair of projections corresponding to the splitting (4.7) and define
the homotopy h(t, ) :==1 — K(P+ (1 —t)Q) from I — K to [ — KP. Clearly, the map
[0,1] x By — E, (t,x) — K[Px + (1 — t)Qx] is compact. If ¢ € [0, 1] and x € E satisfy
h(t,z) =0, then Pz + Qx = x = KPx + (1 — t)KQx. By the invariance of N and R
under K, KPx € N and KQz € R. Therefore, K Px = Px, which implies that Pz = 0,
since K does not have the eigenvalue 1. On the other hand, we have (1 — t)KQz = Q.
Ift=1then Qv =0. If t <1then 1/(1—1¢) > 1, and KQx = %_th implies Qx = 0 by
(4.8). This proves z = 0 and yields that h is an admissible homotopy on B;. Therefore,
Theorem 4.18 implies

deg(I — K, By,0) =deg(l — KP, By,0)
= deg((I — K)|nx, BN N,0) since KP(E) C N
=(-1)" by Proposition 2.22.

In the last equality we have used that dim A" = m and that (I — K)|y has only negative
eigenvalues. O

4.6 The Index of an Isolated Zero

It is often convenient to suppose that there is only a finite number of solutions and then
use the additivity of the degree to show multiplicity of solutions. The following notion
simplifies this argument:

4.25 Definition. Suppose that E is a Banach space, z € F, {2 C F is a neighborhood
of x and K: Q) — F is completely continuous. Suppose moreover that x is the unique
zero of I — K in Q. Then the index of I — K in x (or the fized point index of K in
x) is the integer ind(K, x) := lim,_,odeg(/ — K, B.(x),0). Note that by property (D2)
deg(I — K, B.(z),0) is independent of r > 0 as long as r is small enough.

Since the index is a locally defined object, it can be calculated for differentiable maps
by using their derivatives. To see this we need the

4.26 Lemma. Suppose that E, F are Banach spaces, 2 C E is open and K: Q — F is
completely continuous and Frechet differentiable at some x € Q. Then DK (z) € L.(E, F).

Proof. For y € E set w(y) := K(x +y) — K(x) — DK (x)y. The differentiability of K at
x implies that w(y)/|ly|]| — 0 as ||y|| — 0.

It suffices to show that DK (x)Bj is precompact. Let € > 0 and pick 6 > 0 such that
x+ Bs CQand w(y)/|ly|| < e for y € Bs. Since K(x + Bs) is compact, there is a finite
set X C F such that —K(z) + K(z + Bs) C X + Bs. For y € Bs we have

DE(z)y = —K(2) + K(z +y) — w(y)
and [|w(y)|| < ed. Hence
DK (z)By = DK(2)Bs C —K(x) + K(x + Bs) + B.s € X + Bas

and therefore DK (2)By C $X + By.. Since € > 0 was arbitrary, DK (x) By is precompact.
O
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4.27 Proposition. In the situation of Definition 4.25 suppose that K is Frechet differ-
entiable in x such that I — DK (x) is injective. Then

ind(K, z) = deg({ — DK (z), By, 0).
In particular, |ind(K, z)| = 1.

Proof. Without loss of generality we may assume that x = 0 and therefore K(0) = 0.
Define H(t,z) := (1 —t)K(z) + tDK(0)z for (¢,x) € [0,1] x Q. Then H is completely
continuous. We will show that Ip — H is admissible in a sufficiently small ball B,. If
this were not true there would exist sequences (t,) C [0,1] and x, — 0 in E such that
H(t,,z,) = x, for all n. It would follow that

(I — DK(0)) HiZH = (1= t")(K(WZi‘T DK(0)zn) -0 as n — 0o.

This would imply that 0 € o(Ig—DK(0)) and hence that 0 is an eigenvalue of Iy —DK(0),
by the compactness of DK (0), in contradiction with the injectivity of Ix — DK(O0).
Therefore, there is ry > 0 such that for every r € (0,7¢] it holds true that deg(/g —
K, B,,0) = deg(I; — DK(0), B,,0) = deg(I; — DEK(0), By, 0). O

4.28 Remark. Without supposing the injectiveness of the derivative the preceding
proposition is not true. To see this, consider £ := R and K(z) :=  — 2% Then 0 is
the unique fixed point of K but ind(K,0) = deg(id — K, B;,0) = 0 since the function
(id — K)(z) = z? is positive in —1 and 1. Here (id — DK (0))(z) = z — DK (0)z = 0, that
is, id — DK (0) is not injective.
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5 Applications to Partial Differential
Equations

5.1 Boundary Value Problems

In this section let @ C RY be a bounded domain with smooth boundary. We are
interested in strong solutions u € H*(Q) N HJ () of the elliptic problem

(5.1) —Au(z) — du(x) = f(u(x)), for almost every = € Q,

where A € R and f: 2 x R — R is locally Holder continuous. By regularity theory, any

strong solution of (5.1) is also a classical solution, i.e. a function in the space C*(Q)NC()
that satisfies

(5.2) —Au(z) — Mu(x) = f(u(x)), for all x € Q,

' u(z) =0, for all x € 09.
The linear problem related to (5.1) is
(5.3) —Au(z) — Mu(x) = g(z), for almost every x € €.

There is a set 0(—A) C R (the spectrum of —A with respect to homogeneous Dirichlet
conditions on the boundary) such that if A € R\o(—A), then for all g € L*(Q) there is a
unique function u = Lg € H*(Q) N H} () that is a solution of (5.3). Moreover,

(5.4) L=(-A-)\"1eL(L*(Q),H*(Q)N Hy(Q)).

Since the embedding H?*(Q)) — L?(Q) is compact, also the linear operator L: L*(2) —
L*(Q) is compact.

5.2 An Application of A Priori Bounds

5.1 Theorem. Suppose that A € R\o(—A), and that f: R — R is Lipschitz continuous
and satisfies limyy o f(2,5)/s = 0. Then Equation (5.2) has a classical solution.

Proof. For u € L? we define F(u): Q2 — R by
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Denote by C; a Lipschitz constant for f. For any u,v € L? it follows that F(u), F(v)
are measurable. Moreover,

|F(u)(x)] < [f(u(z)) = FO)] + f(0)] < Cifu(x)] +]f(0)]
and
|F(u)(z) = F(v)(z)] = [f(u(z)) = f(v(z))] < Cilu(z) —v(=)].
Therefore, F(u) € L2, |F(u)ly < |f(0)]|QY2 + Ci|uly and |F(u) — F(v)]z < Cilu — vls.
We conclude that F' is continuous and maps bounded subsets of L? into bounded subsets
of L.
As before we set L := (—A — X\)~!. There is C' > 0 such that

5]

2||.L]]
This implies the existence of (another) C' > 0 such that

lf(s)| < C+ for all s € R.

|U|2

2| L]

(5.5) |F(u)]s < C + for all u € L*.

Finding a solution of (5.1) is equivalent to finding a fixed point of K := Lo F"
(—A+Nu=F(u) & u=LF(u) = K(u).

We will apply Schéfer’s Theorem, Theorem 4.17: First we note that K is absolutely
continuous by the properties of F' and since L is compact as an operator L? — L2.
Suppose that v € L? satisfies u = t K (u) for some t € [0,1]. Then by (5.5)

1
[ul: < [ K ()] < [ LI1F(w)l2 < CILLI + Flule,

i.e. Julp < 2C||L||. This is the necessary a priori bound on solutions u of u = tK (u).
Now Schéfer’s Theorem implies the existence of a fixed point for K. O

5.3 An Exact Multiplicity Result

Denote by 0 < Ay < Ay < A3 < ... the eigenvalues of —A with Dirichlet boundary
conditions on the bounded smooth domain Q C RV,

5.2 Theorem. Consider f € C*(R) with the properties f(0) =0, f"(¢t)t >0 fort #0,
limy 400 f/(t) = by and

(56) )\k—l < f’(O) < >\k < bi < )‘k-f—l'
Then

57) {—Au = f(u), in Q,

u =0, on 052,

has exactly three strong solutions: the trivial solution u =0 and two nontrivial solutions.
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Proof. Set L := (—A)™! and K(u) := LF(u) as before. Since f’ ist strictly increasing
n [0,00) and strictly decreasing on (—oo,0], we have f'(t) € [f(0), \gt1) for all .
Since f'(0) > 0, it follows that |f(t)] < Apj1lt| for all ¢ and F € C'(L? L?) with
(DF(u)v)(z) = f’(u(:v))v(x) Hence K € C'(L? H?) with DK = L o DF. Since
L e L(L? H?), L: L?* — H} is a compact linear operator. Therefore, K: L* — H} is
completely continuous.
For any bounded and measurable function h on €2 we denote by pu;(h) the i-th positive
eigenvalue of the compact linear operator v — L[hv], counted in decreasing order. By
the variational characterization of eigenvalues we have

Lh hv?
(5.8) pi(h) = sup min < v,2v> = sup min fQ—Q
A<HE vEA{0} o] A<H} vEA{0} vl
dim A=i dim A=:
Here we use the norm ||-|| in Hj given by |[v[|* = [,|Vv|* and the associated scalar

product (-,-). It follows easily that if hy < hy on Q and h; < hy on a set of positive
measure, then p;(hy) < p;(hg) for all i € N. For h = \; we find
(5.9) () = A S L

. ilA) = A+ SU min -———5 = A;° — = 1.

g sy =m0y o TN
dim A=i

Note that p;(f'(u)) is the i-th eigenvalue of DK (u).

We consider fixed points of K and claim that if K (u) = u, then u is isolated as a fixed
point of K and

(=1)k  u#0.

If w =0 then ug(f'(0)) < pr(Ar) =1 and pr_1(f'(0)) > pr—1(Ax—1) = 1. Hence 1 is not
an eigenvalue of DK (0) and there are precisely k — 1 eigenvalues larger than 1 for DK (0).
If u # 0 then from —Au = f(u) = (f(u)/u)u we obtain j € N such that u;(f(u)/u) = 1.
Observe that f(t) fo f' implies

(5.10) ind(K,u) — {(_UH’ u=0,

(5.11) A1 < @ < Apt1 for all t € R
and
(5.12) %t) < f'(t) for t # 0.

It follows from (5.11) that g1 (f(u)/u) < prs1 (A1) = Land pe—1 (f(w)/u) > pr—1(Ak—1) =
1. This yields j = k. Since u # 0 on a set of positive measure we infer from (5.12) that

wr(f'(w)) > pe(f(u)/u) = 1 and from the hypotheses that pg1(f"(u)) < pgr1(Aer1) = 1.
Hence 1 is not an eigenvalue of DK (u) and there are precisely k eigenvalues larger than 1
for DK (u). In both cases I — DK (u) is an isomorphism. The implicit function theorem
implies that u is an isolated zero of I — K. By Proposition 4.27 (5.10) holds true.
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Now we prove that there is R > 0 such that |u|y < R for all solutions of (5.7) and
(5.13) deg(I — K, BRL*0) = (—1)F.

Pick b € (Mg, Ak+1) and define the completely continuous operator H (¢, u) := (1—1)K(u)+
tbu. We prove that I — H is admissible on Bg for the value 0 if R is large enough. If
this is false then there exist sequences (¢;) C [0,1] and u; € L? such that |u], — oo and
H(t;,u;) = u;. Define w; := u;/|u;|2. It follows that

pf(a- 0t )u] <

Uy

for all 7. Since L € L.(L? Hj), we may assume that ¢; — t* and w; — w* in H' and
pointwise almost everywhere. Hence

LK(l —t" )Y+ t*wa*} =w"

with
by w*(z)>0
P(r) =< b w(r) <0
b w*(z)=0.

There is j € N with p;(h) = 1. On the other hand, A\, < h < A4y implies pgi1(h) <
ter1(Agr1) = 1 and pug(h) > pp(Ag) = 1, a contradiction. In particular, there is no
sequence of solutions of (5.7) with L?-norm tending to co. Hence all solutions of (5.7)
are contained in Bpg for some fixed large R and I — H is admissible on By for the
value 0. From ppy1(b) < pr1(Mps1) = 1 and pg(d) > pup(Ay) = 1 it follows that
deg(I — b, Bg,0) = (—1)* and hence (5.13).

To conclude we recall that since I — K is proper on By and all zeros are isolated, the
set of zeros of I — K is finite. Denote by m the number of nontrivial solutions. The
excision property (D2), (5.10) and (5.13) imply

(=1 = (=D "+ m(-1)",

that is, m = 2. O
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