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1 Introduction

1.1 Images and Fixed Points
A question that often appears is the following: Given a vector space X, a subset A ⊆ X,
a function f : A→ X and a point y ∈ X, is there x ∈ A such that f(x) = y (a y-point
of f)? Equivalently, does y ∈ R(f) hold true, where R(f) := f(A) is the image of f?
1.1 Examples. (a) Given g : A→ A we search for a fixed point of g, that is, x ∈ A

such that g(x) = x. Defining f : A → X by f(x) := g(x) − x this problem is
equivalent to searching for a zero of f . Note that this equivalence depends on the
given structure of the additive group in the vector space X. In general sets we do
not have an equivalence of fixed point and zero point problems!

(b) Suppose that f : R3 → R is continuously differentiable. We consider an ordinary
differential equation with boundary values for functions u(t) that are defined on
[0, 1]:

(1.1)


ü(t) = f(t, u(t), u̇(t)), t ∈ (0, 1),
u(0) = 0,
u(1) = 0.

The theory of ODEs implies the existence of a continuous function k(s, t) (an
integral kernel) such that u(t) is a solution of (1.1) if and only if u ∈ C2([0, 1]) and

(1.2) u(s) =
∫ 1

0
k(s, t)f(t, u(t), u̇(t)) dt for all s ∈ [0, 1].

We set X := C2([0, 1]) and define F : X → X by

F (u)(s) :=
∫ 1

0
k(s, t)f(t, u(t), u̇(t)) dt.

By (1.2) u is a solution of (1.1) if and only if u is a fixed point of F .

(c) Similarly, we may look for solutions of PDEs: Suppose that Ω ⊆ RN is a bounded
domain and consider

−∆u = f(x, u(x),∇u(x)), x ∈ Ω
u(x) = 0, x ∈ ∂Ω.

(d) We may wonder if a problem like those introduced above has more than one fixed
point. To address this question we need a more refined theory than that of fixed
points.
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1.2 The mapping Degree in One Dimension
In one dimension the mapping degree is just another way to express the content of the
intermediate value theorem. It serves to illustrate how one comes to define the mapping
degree in higher dimensions. Moreover, it will become clear later how the mapping degree
is an extension of the intermediate value theorem to higher dimension.
Suppose that a < b, Ω := (a, b) and f ∈ C(Ω) are such that 0 ∈ R\f(∂Ω). We define

(1.3) deg(f,Ω, 0) :=


0, f(a)f(b) > 0,
1, f(a)f(b) < 0, f(a) < 0,
−1, f(a)f(b) < 0, f(a) > 0.

If y ∈ R\f(∂Ω), then f(a) − y 6= 0 and f(b) − y 6= 0, that is, 0 ∈ R\(f − y)(∂Ω). We
define

deg(f,Ω, y) := deg(f − y,Ω, 0).

It is easy to see that in this situation the following hold true:

(i) deg(id,Ω, y) = 1 if y ∈ Ω,

(ii) deg(f,Ω, y) = deg(f,Ω1, y) + deg(f,Ω2, y) if c ∈ (a, b), Ω1 = (a, c), Ω2 = (c, b) and
y 6= f(c).

To address the question of existence of a y-point of f , the following consequence of the
intermediate value theorem is fundamental:

(iii) if deg(f,Ω, y) 6= 0, then f has a y-point in Ω.

Item (ii) gives information about the location of y in Ω: If f(c) 6= y, if we know
deg(f,Ω, y) and deg(f,Ω1, y), and if deg(f,Ω2, y) = deg(f,Ω, y)−deg(f,Ω1, y) 6= 0, then
there is a y-point in Ω2.
Another property is the homotopy invariance of the mapping degree:

(iv) deg(h(t, ·),Ω, y(t)) is independent of t if h ∈ C([0, 1] × Ω) and y ∈ C([0, 1]) are
such that y(t) ∈ R\h(t, ∂Ω) for all t ∈ [0, 1].

In this situation the function h is called a homotopy. One could think of it as a continuous
deformation from the function h(0, ·) to h(1, ·) in C(Ω).
The property (iv) is proved as follows: To calculate the degree for every t we set

H(t, x) := h(t, x)− y(t) for (t, x) ∈ [0, 1]×Ω. Then H(t, x) 6= 0 for all (t, x) ∈ [0, 1]×∂Ω.
Since the function t 7→ H(t, a) is continuous, it does not change sign, by the intermediate
value theorem. The same holds true for the function t 7→ H(t, b). Therefore, the degree
deg(H(t, ·),Ω, 0) is independent of t because it only depends on the signs of H(t, a) and
H(t, b). Using deg(h(t, ·),Ω, y(t)) = deg(H(t, ·),Ω, 0) we conclude.

More generally we define the degree for an open and bounded set Ω ⊆ R. Topological
arguments imply that Ω consists of a countable set of distinct connected components
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Ωn = (an, bn), n ∈ N (that is, Ω =
⋃̇∞
n=1Ωn and an, bn /∈ Ω). Obviously, |an − bn| → 0 as

n→∞ because Ω is bounded.
Suppose that f : Ω→ R is continuous and such that 0 /∈ f(∂Ω). We show that only

for a finite number of indices n it holds true that deg(f,Ωn, 0) 6= 0: Suppose that nk is
an infinite sequence of indices such that deg(f,Ωnk , 0) 6= 0. Since Ω is bounded and since
ank , bnk ∈ ∂Ω, after passing to a subsequence there is x ∈ ∂Ω such that ank , bnk → x.
Therefore, f(x) 6= 0 and f(ank)f(bnk) > 0 for k sufficiently large. Hence deg(f,Ωnk , 0) = 0
for k sufficiently large. Contradiction!
We may now define

deg(f,Ω, 0) :=
∞∑
n=1

deg(f,Ωn, 0).

As before, for y ∈ R\f(∂Ω) we define

deg(f,Ω, y) := deg(f − y,Ω, 0).

One can show that this degree has similar properties as the degree on an interval. It has
image Z, that is, for all m ∈ Z there are an open and bounded set Ω ⊆ R, f ∈ C(Ω) and
y ∈ R\f(∂Ω) such that deg(f,Ω, y) = m.

1.3 The Degree in Two Dimensions
In two dimensions we identify R2 with C. For the moment we will define the degree only
in the special case of continuously differentiable functions and the open ball with center
0 and radius 1: Ω := {z ∈ C | |z| < 1}, f ∈ C1(Ω,C) and y ∈ C\f(∂Ω). Define the cycle
γ ∈ C1([0, 1],C) by γ(t) := e2πit. Then ∂Ω = |γ| := R(γ). We define

(1.4) deg(f,Ω, y) := 1
2πi

∫
f◦γ

1
z − y

dz.

The integral is the winding number of the cycle f ◦ γ with respect to y. With the
properties of the winding number one proves that items (i) and (iii) of the previous
section hold true, and that also (iv) holds true if h and y are continuously differentiable.

1.2 Example. We define ϕn ∈ C1(Ω,C) by ϕn(z) := zn, where n ∈ N0, and we calculate
the degree of ϕn with respect to y = 0. Then (ϕn ◦ γ)(t) = exp(2πint). Consequently,

deg(ϕn,Ω, 0) = 1
2πi

∫
ϕn◦γ

1
z

dz = 1
2πi

∫ 1

0

2πin exp(2πint)
exp(2πint) dt = n.
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2 Construction of the Degree
In this section we will show that there is a unique mapping “deg”, the (mapping) degree,
which assigns integers to triplets consisting of an open bounded subset Ω ⊆ RN , a
continuous function f : Ω→ RN and a point y ∈ RN\f(∂Ω), and which has the following
basic properties:

(D1) deg(id,Ω, y) = 1 if y ∈ Ω,

(D2) deg(f,Ω, y) = deg(f,Ω1, y) + deg(f,Ω2, y) if Ω1,Ω2 are open subsets of Ω such that
y /∈ f(Ω\(Ω1 ∪ Ω2)),

(D3) deg(h(t, ·),Ω, y(t)) is independent of t ∈ J := [0, 1] if h : J ×Ω→ RN is continuous,
y : J → RN is continuous and y(t) /∈ h(t, ∂Ω) for all t ∈ J .

2.1 Tools
Before we begin we need to establish notation and some topological concepts.

2.1.1 Topological Concepts and Function Spaces
We denote R+ := (0,∞), R− := (−∞, 0), R±0 := R± ∪ {0} and N0 := N ∪ {0}.

In this section suppose that X, Y are metric spaces with metrics dX and dY . Often we
will omit the index in metrics and norms if the context is clear.

Notation. Suppose that x ∈ X and r > 0. We define

Br(x) := Br(x;X) := { y ∈ X | d(x, y) < r }, open ball,
Br(x) := Br(x;X) := { y ∈ X | d(x, y) ≤ r }, closed ball,
Sr(x) := Sr(x;X) := { y ∈ X | d(x, y) = r }, sphere.

2.1 Definition. Suppose that f, g : X → Y are continuous. For J := [0, 1] suppose that
h : J × X → Y is continuous and such that h(0, x) = f(x) and h(1, x) = g(x) for all
x ∈ X (i.e., h(0, ·) = f and h(1, ·) = g). Then h is called a homotopy from f to g.

2.2 Definition. Suppose that X is a metric space and E a Banach space. We set

C(X,E) := {u : X → E | u is continuous },
CB(X,E) := {u : X → E | u is continuous and u(X) is bounded }.
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Then CB(X,E), together with the norm

‖u‖CB(X,E) := ‖u‖C(X,E) := ‖u‖∞ := sup
x∈X
‖u(x)‖E,

is a Banach space. If E = R, then we write C(X) and CB(X) instead of C(X,R) and
CB(X,R).

2.3 Remark. If X is compact, then C(X,E) = CB(X,E).

2.4 Definition. Suppose that M,N ∈ N and Ω ⊆ RN is open. We define for n ∈ N0

Cn(Ω,RM) := {u : Ω→ RM | u is n times continuously differentiable in Ω },

C∞(Ω,RM) :=
∞⋂
n=1

Cn(Ω,RM).

2.1.2 The Extension Theorem of Tietze-Dugundji
Suppose that X, Y are sets, A ⊆ X, f : A→ Y , g : X → Y . We call g an extension of f
to X if g(x) = f(x) for all x ∈ A.

2.5 Definition. Suppose that X is a set and that U and V are coverings of X. If for all
V ∈ V there is U ∈ U such that V ⊆ U , then V is a refinement of U .

2.6 Definition. Suppose that X is a topological space. A collection A of subsets of X
is locally finite if every x ∈ X has a neighborhood U such that U ∩ A 6= ∅ only for a
finite number of A ∈ A.

2.7 Definition. A topological space is paracompact if it is Hausdorff and if every open
covering admits a locally finite refinement.

Without proof we will use the following result of general topology:

2.8 Theorem (Stone). Every metric space is paracompact.

2.9 Theorem (Tietze-Dugundji). Suppose that X is a metric space, E is a normed
space, A ⊆ X is closed and not empty, and f : A → E is continuous. Then f has a
continuous extension g : X → E such that g(X) ⊆ conv(f(A)).

Proof. By Theorem 2.8 there are an index set J and open sets Vj ⊆ X such that
V := {Vj | j ∈ J } is a locally finite covering of X\A, and such that for all j ∈ J there is
xj ∈ X\A with Vj ⊆ Bdist(xj ,A)/2(xj). We define for x ∈ X\A

ϕj(x) :=
{

0 x /∈ Vj
dist(x, ∂Vj) x ∈ Vj

and
ψj(x) := ϕj(x)∑

k∈J ϕk(x) .
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Clearly, ϕj is continuous in X\A (since “dist” is Lipschitz continuous). Since V is locally
finite, the sum is well defined and continuous in X\A. Since V covers X\A, the sum is
positive in X\A. This implies that ψj is continuous in X\A, that 0 ≤ ψj ≤ 1, and that∑

j∈J ψj = 1.
For all j ∈ J pick aj ∈ A ∩B2 dist(xj ,A)(xj). We define

g(x) :=
{
f(x) x ∈ A∑

j∈J ψj(x)f(aj) x ∈ X\A.

Clearly, g is continuous in A because it is an extension of f . The sum is finite in a
neighborhood of a point x ∈ X\A. It follows that g is continuous in X\A. It remains to
prove that g|X\A is continuous in ∂A, because X = A ∪X\A and A ∩X\A = ∂A.

Let x∗ ∈ ∂A and ε > 0. We fix δ > 0 such that ‖f(a)− f(x∗)‖ ≤ ε if a ∈ A ∩Bδ(x∗).
Suppose that x ∈ (X\A) ∩Bδ/6(x∗). If j ∈ J satisfies x ∈ Vj, then

2d(x, xj) ≤ dist(xj, A) ≤ d(xj, x∗) ≤ d(xj, x) + d(x, x∗),

that is,

(2.1) d(x, xj) ≤ d(x, x∗).

We also obtain that

(2.2) d(xj, aj) ≤ 2 dist(xj, A) ≤ 2d(xj, x∗) ≤ 2(d(xj, x) + d(x, x∗)) ≤ 4d(x, x∗).

Equations (2.1) and (2.2) imply that

d(x∗, aj) ≤ d(x∗, x) + d(x, xj) + d(xj, aj) ≤ 6d(x∗, x) ≤ δ.

Hence ‖f(x∗)− f(aj)‖ ≤ ε for all j ∈ J such that x ∈ Vj. This implies that

‖g(x)− f(x∗)‖ =
∥∥∥∥∑
j∈J

ψj(x)(f(aj)− f(x∗))
∥∥∥∥ ≤∑

j∈J

ψjε = ε.

Since x∗ ∈ ∂A and ε were arbitrary, this finishes the continuity proof for g.
It is obvious that g(x) is a convex combination of elements of f(A) for all x ∈ X.

2.1.3 Sard’s Lemma
2.10 Definition. If Ω ⊆ RN is open and f : Ω→ RN continuously differentiable then we
call Jf (x) := det Df(x) the Jacobean of f in x. If Jf (x) = 0 then x is a critical point of
f . If Jf (x) 6= 0 then x is a regular point of f . We write Kf (Ω) := {x ∈ Ω | Jf (x) = 0 },
and we write Kf if from context it is clear which is Ω. We say that y ∈ RN is a regular
value of f : Ω→ RN if f−1(y) ∩Kf (Ω) = ∅, and a singular value otherwise.

2.11 Lemma. Suppose that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) ∩ C1(Ω,RN),
and y ∈ RN\f(∂Ω). If y is a regular value of f then f−1(y) is finite.
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Proof. K := f−1(y) ⊆ Ω is compact because f is continuous and Ω bounded. Arguing
by contradiction, suppose that K is infinite. Then there is a sequence (xn) ⊆ K such
that xm 6= xn if m 6= n. Since K is compact we may assume that there is x ∈ K such
that xn → x as n → ∞. Since y is regular, the inverse function theorem implies that
there are open neighborhoods U of x and V of y such that f |U is a bijection between U
and V , that is, U ∩K = {x}. But this contradicts xn → x in K!

2.12 Definition. If ak ≤ bk for k = 1, 2, . . . , N then K :=
∏N

k=1[ak, bk] is a brick
(rectangular parallelepiped) of dimension N with volume |K| :=

∏N
k=1(bk − ak).

More generally, for a Lebesgue measurable subset A ⊆ RN we denote by |A| its
Lebesgue measure.

Recall that for normed spaces E,F we denote by L(E,F ) the vector space of bounded
linear operators from E to F , together with norm

‖L‖L(E,F ) := sup
x∈B1E

|Lx|.

If F is Banach then L(E,F ) is also a Banach space.

2.13 Proposition (Sard’s Lemma). Suppose that Ω ⊆ RN is open and f ∈ C1(Ω,RN).
Then |f(Kf )| = 0.

Proof. Suppose that

Q :=
{

N∏
k=1

[
xk − 1

2n, x
k + 1

2n

] ∣∣∣∣ n ∈ N, nx ∈ ZN
}
.

Then Q is a countable family of closed cubes covering RN . We set

R := {Q ∈ Q | Q ⊆ Ω }.

It is clear that R is countable and covers Ω. Therefore, it is sufficient prove that
|f(Kf ∩Q)| = 0 for all Q ∈ R.

Suppose that Q ∈ R is a cube of side length r > 0. Since f is continuously differentiable
in a neighborhood of Q we may define C1 := maxx∈Q‖Df(x)‖. Note that f(Kf ∩ Q)
is compact and hence measurable. Suppose that ε ∈ (0, 1]. It is sufficient to show
that |f(Kf ∩ Q)| ≤ C2ε, where C2 does not depend on ε. Since Df is continuous and
Q is compact, Df is uniformly continuous on Q. There is m(ε) ∈ N such that for
δ(ε) :=

√
N r/m(ε) it holds true that:

‖Df(x)−Df(y)‖ ≤ ε for all x, y ∈ Q, |x− y| ≤ δ(ε).
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Hence

(2.3) |f(x)− f(y)−Df(y)[x− y]|

=
∣∣∣∣∫ 1

0
Df((1− t)y + tx)[x− y] dt−Df(y)[x− y]

∣∣∣∣
=
∣∣∣∣∫ 1

0

(
Df((1− t)y + tx)−Df(y)

)
[x− y] dt

∣∣∣∣
≤
∫ 1

0
‖Df((1− t)y + tx)−Df(y)‖ |x− y| dt

≤ εδ(ε)
for all x, y ∈ Q, |x− y| ≤ δ(ε). We decompose Q into n(ε) cubes Qk, k = 1, 2, . . . , n(ε),
with sides parallel to the canonical base, with pairwise disjoint interiors and each with
diameter δ(ε). The side length of Qk is δ(ε)/

√
N = r/m(ε). Therefore, n(ε) = m(ε)N .

We prove that there is C3 ≥ 0, independent of ε and k, such that
(2.4) f(Qk) is measurable and |f(Qk)| ≤ C3εδ(ε)N if Kf ∩Qk 6= ∅.

Suppose that x∗ ∈ Kf ∩Qk. We define L := Df(x∗), Q̃k := Qk − x∗ and g : Q̃k → RN by
g(x) := f(x∗ + x)− f(x∗).

Then (2.3) implies that

(2.5) |g(x)− Lx| ≤ εδ(ε) for all x ∈ Q̃k.

Since Jf(x∗) = det(L) = 0, the image of L is contained in a subspace A of RN of
dimension N − 1. Pick b1 ∈ S1RN ∩ A⊥ and complete {b1} to an orthonormal base
{ b1, b2, . . . , bN } of RN . Using (2.5), (Lx) · b1 = 0 and |b1| = 1 we calculate for x ∈ Q̃k:

|g(x) · b1| = |(g(x)− Lx) · b1| ≤ |g(x)− Lx| ≤ εδ(ε).

For i = 2, 3, . . . , N we obtain for x ∈ Q̃k that
|g(x) · bi| = |(g(x)− Lx) · bi|+ |(Lx) · bi| ≤ |g(x)− Lx|+ ‖L‖ |x| ≤ (ε+ ‖L‖)δ(ε)

because Q̃k ⊆ Bδ(ε)RN . This implies that g(Q̃k) is contained in a rotated brick with sides
that are parallel to the bi, with volume 2N (1+‖L‖)N−1εδ(ε)N . Setting C3 := 2N (1+C1)N−1

and using f(Qk) = f(x∗) + g(Q̃k), we obtain (2.4), noting that f(Qk) is compact and
therefore measurable.
There are no more than n(ε) = m(ε)N cubes Qk that satisfy Kf ∩ Qk 6= ∅. Since
{Qk}n(ε)

k=1 is a covering of Q,

f(Kf ∩Q) ⊆
⋃

Kf∩Qk 6=∅

f(Qk).

From (2.4) we conclude that

|f(Kf ∩Q)| ≤
∑

Kf∩Qk 6=∅

|f(Qk)| ≤ m(ε)NC3εδ(ε)N = C3N
N/2rNε = C2ε,

where C2 := C3N
N/2rN is independent of ε.
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2.1.4 Smoothing
2.14 Definition. Suppose that Ω ⊆ RN is open. If f ∈ C(Ω,RM), then we call

supp(f) := {x ∈ RN | f(x) 6= 0 } ∩ Ω

the support of f . We define for n ∈ N0

Cn
c (Ω) := {u ∈ Cn(Ω) | supp(u) is compact }

C∞c (Ω) :=
∞⋂
n=1

Cn
c (Ω).

2.15 Definition. Fixing N ∈ N we define η ∈ C∞c (RN) by

η(x) :=
{
C exp

(
1

|x|2−1

)
|x| < 1

0 |x| ≥ 1,

where C > 0 is such that
∫
RN η dx = 1. For δ > 0 we define

ηδ(x) := 1
δN

η

(
x

δ

)
.

It follows that ηδ ∈ C∞c (RN), that

(2.6) supp(ηδ) = Bδ(0),

and that

(2.7)
∫
RN
ηδ dx = 1

for all δ > 0. The functions ηδ form a family of mollifiers.

2.16 Proposition. Suppose that u ∈ C(RN). For δ > 0 we define the smoothing
uδ : RN → R of u by the convolution of u and ηδ:

(2.8) uδ(x) := (ηδ ∗ u)(x) :=
∫
RN
ηδ(x− y)u(y) dy =

∫
Bδ(x)

ηδ(x− y)u(y) dy.

Then uδ has the following properties:

(i) uδ ∈ C∞(RN),

(ii) uδ converges uniformly to u in compact subsets of RN as δ → 0,

(iii) if Ω ⊆ RN is open and if u is continuously differentiable in Ω then ∂iuδ converges
uniformly to ∂iu in compact subsets of Ω as δ → 0, for all i = 1, 2, . . . , N .
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2.2 Uniqueness
Our goal here is to deduce, step by step, the necessary form of the mapping degree from
its proposed properties.

2.2.1 Reduction to Linear Operators
2.17 Proposition. A degree with properties (D1)–(D3) is determined by its values on
triplets (g,Ω, z), where Ω ⊆ RN is open and bounded, g ∈ C(Ω,RN) ∩ C∞(Ω,RN) and
z ∈ RN\g(∂Ω) is a regular value of g.

Proof. Suppose that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) and y ∈ RN\f(∂Ω).
We set δ := dist(y, f(∂Ω)) > 0. By Theorem 2.9 we may assume that f ∈ C(RN ,RN).
With Proposition 2.16 and its items (i) and (ii), applied to each of the components of
f , we construct g ∈ C∞(RN ,RN) such that supx∈Ω|f(x) − g(x)| ≤ δ/3. Using Sard’s
Lemma (Proposition 2.13) we pick a regular value z ∈ Bδ/3(y) of g. Moreover, we define
the homotopy h(t, x) := (1− t)f(x) + tg(x) and the map w(t) := (1− t)y+ tz. If t ∈ [0, 1]
and x ∈ ∂Ω, then

|h(t, x)− w(t)| = |f(x)− y − t(f(x)− g(x) + z − y)|
≥ |f(x)− y| − t(|f(x)− g(x)|+ |y − z|) ≥ δ − t(δ/3 + δ/3) ≥ δ/3.

Hence w(t) /∈ h(t, ∂Ω) for all t ∈ [0, 1] and (D3) imply that

(2.9) deg(f,Ω, y) = deg(g,Ω, z)

if “deg” is a degree that satisfies (D1)–(D3).

2.18 Proposition. A degree with the properties (D1)–(D3) is determined by its values
on triplets (L,B1, 0), where L ∈ L(RN ,RN) is an isomorphism.

Proof. Suppose that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) and y ∈ RN\f(∂Ω).
First suppose that f−1(y) = ∅. By definition, ∅ is an open subset of Ω. Using Ω1 := Ω

and Ω2 := ∅ (D2) implies that deg(f,∅, y) = 0. Using Ω1 := ∅, Ω2 := ∅ and f−1(y) = ∅
(D2) implies that deg(f,Ω, y) = 0.

If f−1(y) 6= ∅ we may assume by Proposition 2.17 that f ∈ C(Ω,RN) ∩ C∞(Ω,RN)
and y /∈ f(Kf). Lemma 2.11 implies that there are n ∈ N and x1, x2, . . . , xn ∈ Ω such
that f−1(y) = {x1, x2, . . . , xn }. There is r > 0 (which can be selected arbitrarily small)
such that the balls Br(xk) are disjoint. Property (D2) implies that

(2.10) deg(f,Ω, y) =
n∑
k=1

deg(f,Br(xk), y).

Hence deg(f,Ω, y) is determined by the values of deg(f,Br(xk), y) (k = 1, 2, . . . , n).
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To calculate deg(f,Br(xk), y) fix k and define L := Df(xk). Since L is an isomorphism
we have for x ∈ RN that |x| = |L−1Lx| ≤ ‖L−1‖ |Lx|, that is,

(2.11) |Lx| ≥ |x|
‖L−1‖

for all x ∈ RN .

Moreover, f(xk) = y implies that

|f(x)− y − L[x− xk]|
|x− xk|

→ 0 as x→ xk.

Fix r small enough such that

(2.12) |f(x)− y − L[x− xk]| ≤
|x− xk|
2‖L−1‖

for all x ∈ Br(xk).

We define the homotopy h(t, x) := (1− t)f(x) + tL[x− xk] and the map w(t) := (1− t)y.
With (2.11) and (2.12) we calculate for t ∈ [0, 1] and x ∈ Sr(xk):

|h(t, x)− w(t)| = |L[x− xk] + (1− t)(f(x)− y − L[x− xk])|

≥ |L[x− xk]| − (1− t)|f(x)− y − L[x− xk]| ≥
|x− xk|
2‖L−1‖

= r

2‖L−1‖
> 0.

It follows that w(t) /∈ h(t, ∂Br(xk)) for all t ∈ [0, 1], and (D3) implies that

(2.13) deg(f,Br(xk), y) = deg(L[ · − xk], Br(xk), 0).

Pick R > 0 sufficiently large such that Br(xk) ⊆ BR(0). Since L is an isomorphism,
L[x − xk] = 0 only for x = xk. Hence (D2) implies (using Ω1 := Br(xk) and Ω2 := ∅)
that

(2.14) deg(L[ · − xk], Br(xk), 0) = deg(L[ · − xk], BR(0), 0).

The homotopy h(t, x) := (1− t)L[x− xk] + tLx satisfies for t ∈ [0, 1] and x ∈ SR(0) that

|h(t, x)| = |L[x− (1− t)xk]| ≥
|x− (1− t)xk|
‖L−1‖

≥ |x| − |xk|
‖L−1‖

≥ R− (R− r)
‖L−1‖

> 0.

Hence (D3) implies that

(2.15) deg(L[ · − xk], BR(0), 0) = deg(L,BR(0), 0).

Another application of (D2) proves that

(2.16) deg(L,BR(0), 0) = deg(L,B1(0), 0).

Combining (2.10) with (2.13)–(2.16) we conclude that

(2.17) deg(f,Ω, y) =
n∑
k=1

deg(Df(xk), B1, 0).
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2.2.2 The Degree of a Linear Operator
2.19 Lemma. Suppose that E is a normed space of finite, positive and even dimension.
Then there is a homotopy h of −idE to idE such that

h(t, x) = 0 implies that x = 0.

Proof. Suppose that dim(E) = 2k with k ∈ N. For t ∈ [0, 1] we define a linear operator
A(t) ∈ L(E), represented by a matrix with respect to a fixed base of E. First we set

B(t) :=
(
− cos(πt) sin(πt)
− sin(πt) − cos(πt)

)
,

and then

A(t) :=


B(t) 0 0 · · · 0

0 B(t) 0 · · · 0
0 0 B(t) · · · 0
... ... ... ...
0 0 0 · · · B(t)


︸ ︷︷ ︸

k

.

Is clear that det(A(t)) = 1 and that hence A(t) is an isomorphism for all t. Moreover,
with respect to the norm in L(E), A(t) depends continuously on t because the coordinates
of A(t) are continuous. If tn → t and xn → x then

‖A(tn)xn − A(t)x‖E ≤ ‖A(tn)xn − A(t)xn‖E + ‖A(t)xn − A(t)x‖E
≤ ‖xn‖E‖A(tn)− A(t)‖L(E) + ‖A(t)‖L(E)‖xn − x‖E → 0

because A ∈ C([0, 1],L(E)) and ‖xn‖E → ‖x‖E. Hence h(t, x) := A(t)x is continuous.
Is clear that h(0, x) = −x and h(1, x) = x. Since A(t) is an isomorphism, A(t)x = 0
implies that x = 0.

2.20 Remark. By (D1) and (D3), Lemma 2.19 implies that deg(−id, B1R2k, 0) = 1 for
k ∈ N.

2.21 Lemma. Suppose that “deg” is a degree with (D1)–(D3) in dimension 1. Suppose
moreover that Ω ⊆ R is open, bounded, and such that 0 ∈ Ω. Then deg(−id,Ω, 0) = −1.

Proof. By (D2) we may assume that Ω = B1. We define f ∈ C(B2(1)) by f(x) :=
|x− 1| − 1. Since f and 1 have the same values on ∂B2(1), it follows by Exercise Sheet 2,
No 1, that

deg(f,B2(1), 0) = deg(1, B2(1), 0) = 0.
Here we used the argument of the second paragraph of the proof of Proposition 2.18, i.e.
that the function 1 has no zero. It follows that

deg(f,B1(2), 0) = deg(id− 2, B1(2), 0) (D3)= deg(id, B1(2), 2) (D1)= 1.
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hence (D2) and 0 /∈ f(B2(1)\(B1(0) ∪B1(2))) imply that

deg(−id, B1(0), 0) = deg(f,B1(0), 0)
= deg(f,B2(1), 0)− deg(f,B1(2), 0) = 0− 1 = −1.

2.22 Proposition. Suppose that A is a linear isomorphism in RN and “deg” a degree
that satisfies (D1)–(D3). Then deg(A,B1, 0) = sgn(det(A)).

Proof. From the Jordan normal form of a matrix we deduce the existence of invariant
subspaces F,G for A such that RN = F ⊕ G, sgn(det(A)) = (−1)dim(F ), A|F has only
negative eigenvalues and A|G has only eigenvalues in C\(−∞, 0]. Denote by PF , PG the
projections corresponding to the splitting F⊕G. Since F,G are invariant, PFAPF = APF ,
PGAPG = APG and PFAPG = PGAPF = 0. Hence PFA = PFA(PF + PG) = PFAPF =
APF and similarly PGA = APG.
We define

h(t, x) := (1− t)Ax+ t(−PF + PG)x.

If t ∈ [0, 1] and x ∈ RN satisfy h(t, x) = 0, then

0 = PFh(t, x) = (1− t)PFAx− tPFx = (1− t)APFx− tPFx.

For t = 1 we obtain PFx = 0. For t < 1 it follows that

APFx = t

1− tPFx.

Hence PFx = 0 because A|F has only negative eigenvalues. On the other hand we have

0 = PGh(t, x) = (1− t)APGx+ tPGx.

For t = 1 we obtain PGx = 0. For t < 1 it follows that

APGx = − t

1− tPGx.

Therefore, PGx = 0 because A|G only has eigenvalues in C\(−∞, 0]. Summing up we
proved that x = PFx+ PGx = 0 if h(t, x) = 0 and t ∈ [0, 1]. Using (D3) we obtain that

(2.18) deg(A,B1, 0) = deg(−PF + PG, B1, 0).

Case 1: If dim(F ) = 0 this implies that

deg(A,B1, 0) = deg(id, B1, 0) = 1 = (−1)dim(F ) = sgn(det(A)).

Case 2: For dim(F ) > 0 we distinguish two cases: If dim(F ) is even then we define
D := {0} and E := F . If dim(F ) is odd then we pick D, a subspace of F of dimension
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1, and E, a subspace of F with even dimension such that F = D ⊕ E. We define
QD, QE ∈ L(F ) as the projections with respect to this decomposition of F .

Using Lemma 2.19 we find h1 ∈ C([0, 1]×E,E) such that h1(0, ·) = −idE, h1(1, ·) = idE,
and such that h1(t, x) = 0 implies x = 0. We define

h2(t, x) := −QDPFx+ h1(t, QEPFx) + PGx.

Suppose that t ∈ [0, 1] and x ∈ RN are such that h2(t, x) = 0. We obtain 0 =
PGh2(t, x) = PGx, 0 = −QDPFh2(t, x) = QDPFx and 0 = QEPFh2(t, x) = h1(t, QEPFx).
The properties of h1 imply that QEPFx = 0. We have therefore proved that

(2.19) x = PFx+ PGx = QDPFx+QEPFx+ PGx = 0 if h2(t, x) = 0, t ∈ [0, 1].

We set H := E ⊕ G. It follows that RN = D ⊕ H, and that PD := QDPF and
PH := QEPF + PG are the projections corresponding to this decomposition of RN . The
definition of h2 and (2.19) imply by (D3) that

(2.20) deg(−PF + PG, B1(0), 0) = deg(−PD + PH , B1, 0).

Case 2a): If dim(F ) is even then PD = 0 and PH = id. It follows by (2.18), (2.20)
and (D1) that

deg(A,B1, 0) = 1 = (−1)dim(F ) = sgn(det(A)).

Case 2b): If dim(F ) is odd then by (2.18), (2.20) and (D1) it only remains to prove
that

(2.21) deg(−PD + PH , B1RN , 0) = −1,

because −1 = (−1)dim(F ) = sgn(det(A)). Let us recall that dim(D) = 1. Suppose
that L : R → D a linear isomorphism. We define another degree deg1 in dimension 1:
Suppose that Ω ⊆ R is open and bounded, f ∈ C(Ω) and y ∈ R\f(∂Ω). We define
Ω∗ := L(Ω) +B1H, f∗ ∈ C(Ω∗,RN) by

f∗(x) := Lf(L−1PDx) + PHx

and y∗ := Ly and prove that y∗ /∈ f∗(∂Ω∗): arguing by contradiction, suppose that
there is x ∈ ∂Ω∗ such that f∗(x) = Lf(L−1PDx) + PHx = y∗. It is clear that PHx = 0
because y∗ ∈ D. Hence PDx = x ∈ ∂Ω∗, that is, L−1PDx ∈ ∂Ω, because clearly
∂Ω∗ ∩D = ∂(L(Ω)) = L(∂Ω). Moreover,

y = L−1y∗ = f(L−1PDx),

contradicting y /∈ f(∂Ω). Hence we can define

deg1(f,Ω, y) := deg(f∗,Ω∗, y∗).

We prove the properties (D1)–(D3) for deg1:
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(D1): Suppose that y ∈ Ω. It follows that y∗ ∈ Ω∗ and that
deg1(id,Ω, y) = deg(PD + PH ,Ω∗, y∗) = deg(id,Ω∗, y∗) = 1.

(D2): Suppose that Ω1,Ω2 ⊆ Ω are open and y /∈ f(Ω\(Ω1 ∪ Ω2)). By contradiction,
suppose that there is x ∈ Ω∗\(Ω1∗ ∪ Ω2∗) such that f∗(x) = y∗. As before, PHx = 0
and L−1PDx ∈ Ω\(Ω1 ∪ Ω2). Moreover, f(L−1PDx) = y, a contradiction. Hence
y∗ /∈ f∗(Ω∗\(Ω1∗ ∪ Ω2∗)) and we obtain that

deg1(f,Ω, y) = deg(f∗,Ω∗, y∗)
= deg(f∗,Ω1∗, y∗) + deg(f∗,Ω2∗, y∗)
= deg1(f,Ω1, y) + deg1(f,Ω2, y).

(D3): Suppose that h ∈ C([0, 1]×Ω) and y ∈ C([0, 1]) are such that y(t) /∈ h(t, ∂Ω) for
all t ∈ [0, 1]. We define h∗(t, x) := Lh(t, L−1PDx) + PHx for x ∈ RN and y∗(t) := Ly(t).
By contradiction, suppose that there are t ∈ [0, 1] and x ∈ ∂Ω∗ such that h∗(t, x) = y∗(t).
Once again this implies that L−1PDx ∈ ∂Ω and h(t, L−1PDx) = y(t), a contradiction.
Hence y∗(t) /∈ h∗(t, ∂Ω∗) for all t ∈ [0, 1] and we obtain that

deg1(h(t, ·),Ω, y) = deg(h∗(t, ·),Ω∗, y∗(t))
is independent of t.
We remark that −PD + PH is an isomorphism and that L ◦ (−id) ◦ L−1 ◦ PD = −PD.

Define Ω := L−1(B1D) and observe that 0 ∈ Ω. Using (D2) and Lemma 2.21, we calculate
deg(−PD + PH , B1RN , 0) = deg(−PD + PH , B1D +B1H, 0) = deg1(−id,Ω, 0) = −1.

This proves (2.21) and finishes the proof.

Summing up, Proposition 2.17, Proposition 2.18 and Proposition 2.22 and its proofs
imply
2.23 Theorem. Suppose that “deg” is a degree that satisfies (D1)–(D3). Suppose
that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) and y ∈ RN\f(∂Ω). We set ρ :=
dist(y, f(∂Ω)). Then there are g ∈ C(Ω,RN) ∩ C∞(Ω,RN) and a regular value z ∈
RN\g(∂Ω) of g such that ‖f − g‖C(Ω,RN ) ≤ ρ/3 and |y − z| ≤ ρ/3. For all those g and z
it holds true that g−1(z) is a finite set and that

(2.22) deg(f,Ω, y) =
∑

x∈g−1(z)

sgn Jg(x).

2.3 Existence
2.3.1 Regular Values and Functions in C2

2.24 Definition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C1(Ω,RN )∩C(Ω,RN )
and y ∈ RN\f(∂Ω ∪Kf ). We define

deg(f,Ω, y) :=
∑

x∈f−1(y)

sgn Jf (x).
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2.25 Remarks. (a) Lemma 2.11 implies that the sum mentioned above is finite.

(b) If f−1(y) = ∅, then deg(f,Ω, y) = 0 because the sum is empty.

We are interested in extending Definition 2.24 to singular values y of f . Suppose that
ρ := dist(y, f(∂Ω)) > 0. Since f(Kf ) has zero measure in RN there are regular values in
the ball Bρ(y). It is natural to define the degree deg(f,Ω, y) by deg(f,Ω, y1) if y1 ∈ Bρ(y)
is a regular value of f . But one has that prove that this definition does not depend on
the selection of y1, and for this we need some tools.

2.26 Lemma. Suppose that Ω, f and y are as in Definition 2.24. For δ > 0 suppose
that ηδ is given by Definition 2.15. Then there is δ0 > 0 such that

(2.23) deg(f,Ω, y) =
∫

Ω
ηδ(f(x)− y)Jf (x) dx for all δ ∈ (0, δ0].

Proof. If f−1(y) = ∅ then pick 0 < δ0 < dist(y, f(Ω)). It follows that ηδ(f(x)− y) = 0
for all x ∈ Ω and δ ∈ (0, δ0] because supp(ηδ) = Bδ. Therefore, (2.23) holds true.
Suppose that f−1(y) = {x1, x2, . . . , xn }. We find r1 > 0 such that the closed balls

Br1(xk) ⊆ Ω are mutually disjoint and each of the restrictions of f to Br1(xk) is a
diffeomorphism with image Vk, an open neighborhood of y. It follows from the continuity
of Jf that

(2.24) sgn Jf (x) = sgn Jf (xk) for all x ∈ Br1(xk).

There is r2 > 0 such that Br2(y) ⊆
⋂n
k=1 Vk and f−1(Br2(y)) ⊂

⋃n
k=1Br1(xk). We

define the open sets Wk := f−1(Br2(y)) ∩Br1(xk). Then dist(y, f(Ω\
⋃n
k=1Wk)) ≥ r2. If

δ ≤ δ0 := r2 and x ∈ Ω\
⋃n
k=1Wk then f(x)− y /∈ Bδ and ηδ(f(x)− y) = 0. Hence (2.24)

implies that

(2.25)
∫

Ω
ηδ(f(x)− y)Jf (x) dx =

n∑
k=1

sgn Jf (xk)
∫
Wk

ηδ(f(x)− y)|Jf (x)| dx.

We observe that Jf−y = Jf . Moreover, f is a diffeomorphism of Wk and Br2(y), and
therefore f − y is a diffeomorphism of Wk and Br2 . It follows by a change of variables
and from Bδ ⊆ Br2 that∫

Wk

ηδ(f(x)− y)|Jf (x)| dx =
∫
Br2

ηδ(z) dz = 1.

Using this, (2.25) implies (2.23).

2.27 Definition. Suppose that A = ((aij)) ∈ RN×N is a matrix. By definition, the
cofactor detij(A) is (−1)i+j times the determinant of A after taking away the i-th row
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and the j-th column:

det
ij

(A) := (−1)i+j det



a11 a12 · · · a1,j−1 a1,j+1 · · · a1N
a21 a22 · · · a2,j−1 a2,j+1 · · · a2N
... ... ... ... ...

ai−1,1 ai−1,2 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,N
ai+1,1 ai+1,2 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,N

... ... ... ... ...
aN1 aN2 · · · aN,j−1 aN,j+1 · · · aNN


.

2.28 Lemma. Suppose that Ω ⊆ RN is open and f ∈ C2(Ω,RN). We define dij(x) :=
detij(Df(x)). Then

N∑
j=1

∂jdij(x) = 0 for all i = 1, 2, . . . , N and x ∈ Ω.

Proof. In this proof the symbol ·̂ denotes omission of the object represented by the dot.
Fix i and denote

gk := ∂k(f 1, f 2, . . . , f̂ i, . . . , fN)T .

It follows that
dij(x) = (−1)i+j det(g1, g2, . . . , ĝj, . . . , gN).

The determinant is linear in every column. It follows that

(2.26) ∂jdij(x) = (−1)i+j
∑
k 6=j

det(g1, g2, . . . , ĝj, . . . , ∂jgk, . . . , gN).

We set
ckj := det(∂jgk, g1, g2, . . . , ĝj, . . . , ĝk, . . . , gN).

Since f ∈ C2(Ω,RN), we have ∂kgj = ∂jgk. This implies that ckj = cjk. Interchanging
two neighboring columns in a determinant just changes its sign. Therefore,

(2.27) det(g1, g2, . . . , ĝj, . . . , ∂jgk, . . . , gN) =
{

(−1)k−1ckj, k < j,

(−1)k−2ckj, k > j.

We define σkj = 1 for k < j, σjj = 0 and σkj = −1 for k > j. With this notation (2.26)
and (2.27) imply that

(−1)i+j∂jdij(x) =
∑
k<j

(−1)k−1ckj +
∑
k>j

(−1)k−2ckj =
N∑
k=1

(−1)k−1σkjckj.
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Adding terms up with respect to j we obtain

(−1)i
N∑
j=1

∂jdij(x) =
N∑

j,k=1

(−1)k−1+jσkjckj

=
N∑

j,k=1

(−1)j−1+kσjkcjk change of index

= −
N∑

j,k=1

(−1)k−1+jσkjckj σjk = −σkj, cjk = ckj.

This implies that the sum is 0.

2.29 Proposition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C2(Ω,RN )∩C(Ω,RN )
and y ∈ RN\f(∂Ω). Set ρ := dist(y, f(∂Ω)). If y1, y2 ∈ Bρ(y) are regular values of f ,
then

deg(f,Ω, y1) = deg(f,Ω, y2),
where the degree “deg” is given by Definition 2.24.

Proof. Using Lemma 2.26, it is sufficient to prove that

(2.28)
∫

Ω
(ηδ(f(x)− y2)− ηδ(f(x)− y1))Jf (x) dx = 0

for δ > 0 small. The idea is to express (ηδ(f(x) − y2) − ηδ(f(x) − y1))Jf(x) as the
divergence of a function v with compact support in Ω.
On exercise Sheet 2, no. 2 it was proved that for δ > 0 the function

w(x) := (y1 − y2)
∫ 1

0
ηδ(x− (1− t)y1 − ty2) dt.

satisfies

(2.29) divw(x) = ηδ(x− y2)− ηδ(x− y1).

Unfortunately, this does not imply that w ◦ f has divergence (ηδ(f(x)− y1)− ηδ(f(x)−
y2))Jf (x).
We define ρ1 := max{ |y − y1|, |y − y2| } < ρ and pick 0 < δ0 < ρ− ρ1. For δ ∈ (0, δ0],

t ∈ [0, 1] and x ∈ RN with |x− y| > ρ1 + δ0 we obtain that

|x− (1− t)y1 − ty2| ≥ |x− y| − ((1− t)|y − y1|+ t|y − y2|)
> ρ1 + δ0 − ρ1

≥ δ.

Then w(x) = 0. This shows that

(2.30) supp(w) ⊆ Bρ1+δ0(y) ⊆ Bρ(y) ⊆ RN\f(∂Ω) if δ ≤ δ0.
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Fixing δ ∈ (0, δ0] we define dij := detij(Df) as in Lemma 2.28 and v ∈ C1(Ω,RN) by

vj(x) :=
N∑
i=1

wi(f(x))dij(x).

By (2.30), dist(supp(w ◦ f), ∂Ω) > 0 and hence supp(v) is compact. Extending v to RN

by 0 gives v ∈ C1
c (RN ,RN). We calculate

(2.31) ∂jv
j(x) =

N∑
i=1

N∑
k=1

∂kw
i(f(x))∂jfk(x)dij(x) +

N∑
i=1

wi(f(x))∂jdij(x).

It remains to sum up this expression with respect to j. For i = k in the first sum we
have

N∑
j=1

dij(x)∂jfk(x) =
N∑
j=1

dij(x)∂jf i(x) = Jf (x)

(developing the determinant of Df(x) by the i-th row). For i < k we observe that

N∑
j=1

dij(x)∂jfk(x) = det



∂1f
1(x) . . . ∂Nf

1(x)
... ...

∂1f
i−1(x) . . . ∂Nf

i−1(x)
∂1f

k(x) . . . ∂Nf
k(x)

∂1f
i+1(x) . . . ∂Nf

i+1(x)
... ...

∂1f
k−1(x) . . . ∂Nf

k−1(x)
∂1f

k(x) . . . ∂Nf
k(x)

∂1f
k+1(x) . . . ∂Nf

k+1(x)
... ...

∂1f
N(x) . . . ∂Nf

N(x)



= 0.

Similarly one obtains that
∑N

j=1 dij(x)∂jfk(x) = 0 if i > k. Summing up, this implies

(2.32)
N∑
j=1

dij(x)∂jfk(x) = δikJf (x) for all i, k = 1, 2, . . . , N.

Joining (2.31) with Lemma 2.28 and (2.32) leads to

div v(x) =
N∑
i=1

N∑
k=1

∂kw
i(f(x))

N∑
j=1

∂jf
k(x)dij(x) +

N∑
i=1

wi(f(x))
N∑
j=1

∂jdij(x)

=
N∑
i=1

N∑
k=1

∂kw
i(f(x))δikJf (x)

= Jf (x)
N∑
i=1

∂iw
i(f(x))

= Jf (x) divw(f(x)).

21



Recall that
∫
RN div v = 0 since v ∈ C1

c (RN ,RN). Using (2.29) this proves (2.28).

2.3.2 Singular Values and Functions in C1

2.30 Lemma. Suppose that A,B ∈ L(RN) and A is invertible. If moreover

(2.33) ‖A−B‖ < 1
‖A−1‖

holds true then sgn(detA) = sgn(detB).

Proof. Define γ ∈ C([0, 1],L(RN)) by γ(t) := (1 − t)A + tB. Observe that γ(t) =
(I − (A− γ(t))A−1)A. By (2.33) we know that ‖(A− γ(t))A−1‖ ≤ t‖A−B‖ ‖A−1‖ < 1.
The Neumann series implies that γ(t)−1 exists and that

γ(t)−1 = A−1(I − (A− γ(t))A−1)−1 = A−1
∞∑
k=0

((A− γ(t))A−1)k.

Therefore, det(γ(t)) 6= 0 for t ∈ [0, 1]. The continuity of the determinant and the
intermediate value theorem imply that sgn(detA) = sgn(det γ(0)) = sgn(det γ(1)) =
sgn(detB).

2.31 Lemma. Suppose that Ω ⊆ RN is open and bounded, f ∈ C1(Ω,RN) ∩ C(Ω,RN)
and y ∈ RN\f(∂Ω ∪Kf ). Then there are a compact set K ⊆ Ω and r > 0 such that for
all g ∈ C1(Ω,RN) ∩ C(Ω,RN) with

(2.34) ‖f − g‖C(Ω,RN ) + ‖Df −Dg‖C(K,L(RN )) ≤ r

it holds true that y ∈ RN\g(∂Ω ∪Kg) and

deg(f,Ω, y) = deg(g,Ω, y),

where the degree “deg” is given by Definition 2.24.

Proof. Suppose that f−1(y) = {x1, x2, . . . , xn }. We define the linear isomorphisms
Ak := Df(xk). There is r1 > 0 such that the balls Br1(xk) ⊆ Ω are disjoint and that

|f(x)− y − Ak[x− xk]| ≤
r1

2‖A−1
k ‖

(2.35)

and

‖Df(x)− Ak‖ ≤
1

4‖A−1
k ‖

(2.36)

for all k = 1, 2, . . . , n and x ∈ Br1(xk). This follows because y is a regular value of f and
by the continuous differenciability of f . We set W :=

⋃n
k=1Br1(xk).
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We prove that if g ∈ C1(Ω,RN) satisfies

(2.37) ‖f − g‖C(W,RN ) ≤
r1

2 maxnk=1‖A
−1
k ‖

and

(2.38) sup
x∈W
‖Df(x)−Dg(x)‖L(RN ) ≤

1
4 maxnk=1‖A

−1
k ‖

,

then for all k = 1, 2, . . . , n

(2.39) sgn Jg(x) = sgn Jf (xk) for x ∈ Br1(xk)

and

(2.40) g has precisely one y-point in Br1(xk).

To prove (2.39) we fix k, x ∈ Br1(xk), A := Df(x) and B := Dg(x), and calculate,
using (2.36) and (2.38):

‖Ak −B‖ ≤ ‖Ak − A‖+ ‖A−B‖ ≤ 1
2‖A−1

k ‖
.

Lemma 2.30 implies that sgn Jg(x) = sgn Jf (xk).
To prove (2.40) we fix k and define ϕ : Br1(xk)→ RN by

ϕ(x) := x− A−1
k (g(x)− y).

It follows that ϕ(x) = x if and only if g(x) = y. If x ∈ Br1(xk), then we have by (2.35)
and (2.37)

|ϕ(x)− xk| ≤ ‖A−1
k ‖
(
|Ak[x− xk] + y − f(x)|+ |f(x)− g(x)|

)
≤ r1,

that is, ϕ(Br1(xk)) ⊆ Br1(xk). Moreover,

‖Dϕ(x)‖ = ‖I − A−1
k Dg(x)‖ ≤ ‖A−1

k ‖
(
‖Ak −Df(x)‖+ ‖Df(x)−Dg(x)‖

)
≤ 1

2

by (2.36) and (2.38). For x1, x2 ∈ Br1(xk) this implies that

|ϕ(x1)− ϕ(x2)| ≤
∫ 1

0
|Dϕ((1− t)x1 + tx2)[x2 − x1]| dt ≤ 1

2 |x1 − x2|.

Then ϕ is a strict contraction in Br1(xk) and Banach’s fixed point theorem implies that
there is precisely one fixed point of ϕ in Br1(xk). This gives (2.40).
We set

r := min
{

r1

2 maxnk=1‖A
−1
k ‖

,
1

4 maxnk=1‖A
−1
k ‖

,
1
2 dist(y, f(Ω\W ))

}
.
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Then r > 0. If g ∈ C1(Ω,RN) ∩ C(Ω,RN) satisfies (2.34) for this r and with K := W ,
then (2.37) and (2.38) are satisfied and imply (2.39) and (2.40). The definition of r
implies that g−1(y) ⊆ W . For k = 1, 2, . . . , n denote by zk the unique y-point of g in
Br1(xk). Hence g−1(y) = { z1, z2, . . . , zn }, and y is a regular value of g, by (2.39) and
because y is a regular value of f . Moreover, (2.39) implies that

deg(f,Ω, y) =
n∑
k=1

sgn Jf (xk) =
n∑
k=1

sgn Jg(zk) = deg(g,Ω, y).

The difference of the following proposition with Proposition 2.29 is that we only
suppose that f is in C1.

2.32 Proposition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C1(Ω,RN )∩C(Ω,RN )
and y ∈ RN\f(∂Ω). We set ρ := dist(y, f(∂Ω)). If y1, y2 ∈ Bρ(y) are regular values of f ,
then

deg(f,Ω, y1) = deg(f,Ω, y2),

where the degree “deg” is given by Definition 2.24.

Proof. Suppose that Ki and ri are given by Lemma 2.31 with respect to yi, i = 1, 2.
Suppose that ρ1 ∈ (0, ρ) is such that y1, y2 ∈ Bρ1(y). Smoothing the components of f
and continuously extending them to RN with Theorem 2.9, Proposition 2.16 provides
g ∈ C∞(Ω,RN) ∩ C(Ω,RN) such that (2.34) holds true, where we define K := K1 ∪K2
and r := min{r1, r2 }. Moreover, we may assume that

(2.41) ‖f − g‖C(Ω,RN ) ≤ ρ− ρ1.

Then ρ1 ≤ dist(y, g(∂Ω)). Using Lemma 2.31 and Proposition 2.29 we obtain

deg(f,Ω, y1) = deg(g,Ω, y1) = deg(g,Ω, y2) = deg(f,Ω, y2).

Using Proposition 2.32 and Sard’s Lemma (Proposition 2.13) we may make the

2.33 Definition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C1(Ω,RN )∩C(Ω,RN )
and y ∈ RN\f(∂Ω). We set ρ := dist(y, f(∂Ω)) and define

deg(f,Ω, y) := deg(f,Ω, y1),

where y1 ∈ Bρ(y) is any regular value of f and deg(f,Ω, y1) is given by Definition 2.24.

2.34 Remark. If f−1(y) = ∅, then f−1(y1) = ∅ for y1 ∈ RN\f(Kf) that satisfies
|y1 − y| < dist(y, f(Ω)). Definition 2.24 and Definition 2.33 imply that deg(f,Ω, y) =
deg(f,Ω, y1) = 0.
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2.3.3 Approximation of Continuous Functions
For the extension of this definition to maps that are only continuous we need the

2.35 Proposition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) and
y ∈ RN\f(∂Ω). We set ρ := dist(y, f(∂Ω)). If g1, g2 ∈ C1(Ω,RN) ∩ C(Ω,RN) satisfy
‖f − gi‖C(Ω,RN ) < ρ for i = 1, 2, then

deg(g1,Ω, y) = deg(g2,Ω, y),

where “deg” is given by Definition 2.33.

Proof. Put J := [0, 1] and define h(t, x) := (1− t)g1(x) + tg2(x). We will use the notation
ht := h(t, ·). For t ∈ J and x ∈ ∂Ω we have

|h(t, x)− y| ≥ |f(x)− y| −
(
(1− t)|g1(x)− f(x)|+ t|g2(x)− f(x)|

)
> ρ− ((1− t)ρ+ tρ) = 0.

Then by Definition 2.33, ϕ(t) := deg(ht,Ω, y) is well defined for all t ∈ J . We need to
show that ϕ is constant. Since ϕ takes values in Z it is sufficient to show that

(2.42) ϕ is locally constant on J

since this implies continuity and hence constancy of ϕ.
Fix t0 ∈ J .

Case 1: h−1
t0 (y) = ∅. Set δ := dist(y, ht0(Ω)). If |t− t0| ≤ δ/(2ρ), then

|h(t, x)− y| ≥ |h(t0, x)− y| − |h(t0, x)− h(t, x)|
≥ δ − |t− t0| ‖g1 − g2‖∞

≥ δ − δ

2ρ(‖g1 − f‖∞ + ‖g2 − f‖∞)

> 0

for all x ∈ Ω. Therefore, h−1
t (y) = ∅, and by Remark 2.34 ϕ(t) = deg(ht,Ω, y) = 0 for

t ∈ [t0 − δ/(2ρ), t0 + δ/(2ρ)] ∩ J .

Case 2: y ∈ ht0(Ω) is a regular value of ht0 . Write h−1
t0 (y) = {x1, x2, . . . , xn }. The

implicit function theorem implies that there are r, s1 > 0 and functions zk ∈ C1((t0 −
s1, t0 + s1), Br(xk)) such that h−1

t (y) ∩ Br(xk) = {zk(t)} and zk(t0) = xk, for t ∈
(t0 − s1, t0 + s1) and k = 1, 2, . . . , n. Without restriction suppose that the balls Br(xk)
are disjoint and that sgn Jht0 (x) = sgn Jht0 (xk) for x ∈ Br(xk), using Lemma 2.30.

Define V :=
⋃n
k=1Br(xk) and δ := dist(y, ht0(Ω\V )) > 0. As in Case 1 one proves that

h−1
t (y) ∩ (Ω\V ) = ∅ for |t− t0| ≤

δ

2ρ.
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The function (t, x) 7→ Jht(x) is uniformly continuous in J × V , and Jht0 has no zero in
V . There is s2 > 0 such that Jht(x) 6= 0 for (t, x) ∈ (t0 − s2, t0 + s2)× V .
With µ := min{s1, s2, δ/(2ρ)} we obtain that

h−1
t (y) = { z1(t), z2(t), . . . , zn(t) }

and that sgn Jht(zk(t)) = sgn Jht0 (xk) 6= 0 for all t ∈ (t0 − µ, t0 + µ) ∩ J and all k. It
follows for t ∈ (t0 − µ, t0 + µ) ∩ J that

ϕ(t) =
n∑
k=1

sgn Jht(zk(t)) =
n∑
k=1

sgn Jht0 (xk) = ϕ(t0).

Case 3: y ∈ ht0(Ω) is a singular value of ht0 . Set δ := dist(y, ht0(∂Ω)) and pick a regular
value y1 ∈ Bδ(y) of ht0 . As in Case 2 it follows that there is s > 0 such that y1 is a
regular value of ht and that deg(ht,Ω, y1) = deg(ht0 ,Ω, y1) for t ∈ (t0− s, t0 + s). Taking
s sufficiently small we may assume that |y − y1| < dist(y, ht(∂Ω)) for these values of t.
Using Definition 2.33 we obtain that ϕ(t) = ϕ(t0) if t ∈ (t0 − s, t0 + s). This concludes
the proof of (2.42).

By Proposition 2.35 and Proposition 2.16 we may make the following

2.36 Definition. Suppose that Ω ⊆ RN is open and bounded, f ∈ C(Ω,RN) and
y ∈ RN\f(∂Ω). Define

deg(f,Ω, y) := deg(g,Ω, y),

where g ∈ C1(Ω,RN )∩C(Ω,RN ) satisfies ‖f−g‖C(Ω,RN ) < dist(y, f(∂Ω)) and deg(g,Ω, y)
is given by Definition 2.33.

2.37 Remark. Suppose that Ω, f and y are as in the preceding definition. We may
calculate the degree directly with Definition 2.24 (using a regular value) as follows: Set
ρ := dist(y, f(∂Ω)) and pick g ∈ C1(Ω,RN )∩C(Ω,RN ) and a regular value z ∈ RN\g(∂Ω)
of g such that ‖f−g‖∞ ≤ ρ/3 and |y−z| ≤ ρ/3. It follows that ‖f−g‖∞ < dist(y, f(∂Ω))
and

|y − z| ≤ ρ/3 < 2ρ/3 ≤ dist(y, f(∂Ω))− ‖f − g‖∞ ≤ dist(y, g(∂Ω)).

By Definition 2.33 and Definition 2.24 we obtain

(2.43) deg(f,Ω, y) = deg(g,Ω, y) = deg(g,Ω, z).

2.38 Theorem. The degree given in Definition 2.36 satisfies (D1)–(D3).

Proof. (D1) Since “id” is differentiable and 0 a regular value, Definition 2.24 implies the
claim.
(D2) Define A := Ω\(Ω1∪Ω2) and ρ := dist(y, f(A)) > 0. By extension and smoothing

(Theorem 2.9 and Proposition 2.16) we find g ∈ C∞(Ω,RN) ∩ C(Ω,RN) and a regular
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value z ∈ RN\g(∂Ω) of g such that ‖f − g‖∞ ≤ ρ/3 and |y − z| ≤ ρ/3. Observe that
∂Ω ⊆ A implies ρ ≤ dist(y, f(∂Ω)). Therefore, Remark 2.37 implies

(2.44) deg(f,Ω, y) = deg(g,Ω, z).

Since g−1(z) ∩ A = ∅, Definition 2.24 gives

(2.45)

deg(g,Ω, z) =
∑

x∈g−1(z)

sgn Jg(x)

=
∑

x∈g−1(z)∩Ω1

sgn Jg(x) +
∑

x∈g−1(z)∩Ω2

sgn Jg(x)

= deg(g,Ω1, z) + deg(g,Ω2, z).

The inclusions ∂Ωi ⊆ A imply that ρ ≤ dist(y, f(∂Ωi)) for i = 1, 2. Using Remark 2.37
once more we obtain

(2.46) deg(f,Ωi, y) = deg(g,Ωi, z) for i = 1, 2.

Joining Equations (2.44), (2.45) and (2.46) we conclude.
(D3) Suppose that J := [0, 1], h ∈ C(J × Ω,RN) is a homotopy and y ∈ C(J,RN)

is such that y(t) /∈ h(t, ∂Ω) for all t ∈ J . Define ρ(t) := dist(y(t), h(t, ∂Ω)) > 0 for
t ∈ J . We prove that ρ0 := min ρ(J) > 0. By contradiction, suppose that there
is (tn) ⊆ J such that ρ(tn) → 0 as n → ∞. For every n there is xn ∈ ∂Ω with
|y(tn) − h(tn, xn)| ≤ ρ(tn) + 1/n, by the definition of ρ. Since ∂Ω and J are compact,
passing to a subsequence we may assume that tn → t∗ ∈ J and xn → x∗ ∈ ∂Ω as n→∞.
The continuity of y and h imply that

0 < ρ(t∗) ≤ |y(t∗)− h(t∗, x∗)| = lim
n→∞
|y(tn)− h(tn, xn)| ≤ lim

n→∞
(ρ(tn) + 1/n) = 0,

a contradiction.
By extension and smoothing we find H ∈ C∞(RN+1,RN ) such that ‖h−H‖C(J×Ω,RN ) ≤

ρ0/4. As usual, we write ht := h(t, ·) and Ht := H(t, ·). It follows that

‖ht −Ht‖C(Ω,RN ) ≤
ρ0

4 < ρ0 ≤ ρ(t) = dist(y(t), ht(∂Ω))

and, by Definition 2.36,

(2.47) deg(ht,Ω, y(t)) = deg(Ht,Ω, y(t)) for all t ∈ J.

Observe that

(2.48) dist(y(t), Ht(∂Ω)) ≥ 3ρ0

4 for all t ∈ J.

Since H is uniformly continuous in J × Ω and y is uniformly continuous in J there
is δ > 0 such that ‖Hs − Ht‖C(Ω,RN ) ≤ ρ0/4 and |y(s) − y(t)| ≤ ρ0/4 for s, t ∈ J with
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|s− t| ≤ δ. Fix such s, t and observe that V := Bρ0/4(y(s)) ∩Bρ0/4(y(t)) is open and not
empty. Sard’s Lemma implies that A := Hs(KHs) ∪Ht(KHt) has zero measure, that is,
RN\A is dense in RN . In consequence, there is z ∈ V \A, i.e. z ∈ V is a regular value of
Hs and of Ht.
Observe that (2.48) yields

|z − y(s)| ≤ ρ0

4 <
3ρ0

4 ≤ dist(y(s), Hs(∂Ω)).

Now Definition 2.33 yields

(2.49) deg(Hs,Ω, y(s)) = deg(Hs,Ω, z).

Similarly we obtain

(2.50) deg(Ht,Ω, y(t)) = deg(Ht,Ω, z).

From (2.48) and |z − y(s)| ≤ ρ0/4 we infer dist(z,Hs(∂Ω)) ≥ ρ0
2 . Hence the inequality

‖Hs −Ht‖C(Ω,RN ) ≤
ρ0
4 (definition of δ, s and t) and Proposition 2.35 imply that

(2.51) deg(Hs,Ω, z) = deg(Ht,Ω, z).

By the preceding equations we deduce

(2.52)

deg(hs,Ω, y(s)) = deg(Hs,Ω, y(s)), by (2.47),
= deg(Hs,Ω, z), by (2.49),
= deg(Ht,Ω, z), by (2.51),
= deg(Ht,Ω, y(t)), by (2.50),
= deg(ht,Ω, y(t)), by (2.47).

Define ϕ : J → Z by ϕ(t) := deg(ht,Ω, y(t)). Equation (2.52) implies that ϕ is locally
constant, that is, ϕ ∈ C(J). Therefore, ϕ is constant on J .
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3 Properties and Applications of the
Degree

3.1 Basic Properties and Applications
For N ∈ N we define

(3.1) AN := { (f,Ω, y) | Ω ⊆ RN open and bounded, f ∈ C(Ω,RN), y ∈ RN\f(∂Ω) },

the set of admissible triplets in dimension N . Definition 2.36 defines the degree as a map
deg : AN → Z with the properties (D1)–(D3).

3.1 Proposition. The degree satisfies the following additional properties:

(D4) deg(f,Ω, y) 6= 0 implies that f−1(y) 6= ∅.

(D5) deg(·,Ω, y) and deg(f,Ω, ·) are constant functions in Bρ(f ;C(Ω,RN )) and Bρ(y;RN ),
respectively, where ρ := dist(y, f(∂Ω)) > 0. Moreover, deg(f,Ω, ·) is constant in
every connected component of RN\f(∂Ω).

(D6) deg(g,Ω, y) = deg(f,Ω, y) if g|∂Ω = f |∂Ω.

(D7) deg(f,Ω, y) = deg(f,Ω1, y) for all open subsets Ω1 of Ω such that y /∈ f(Ω\Ω1).

Proof. (D4)We showed at the beginning of the proof of Proposition 2.18 that f−1(y) = ∅
implies that deg(f,Ω, y) = 0.
(D5) The first claim was proved on Exercise Sheet 2, No1. For the second claim, let

y1 and y2 belong to the same connected component. There is a path y(t) from y1 to
y2 in RN\f(∂Ω) since this set is locally path connected. Property (D3) implies that
deg(f,Ω, y1) = deg(f,Ω, y2).
(D6) This is a special case of Exercise Sheet 2, No1(ii).
(D7) This is a consequence of properties (D4) and (D2), where Ω2 = ∅.

3.2 Theorem (Brouwer). Suppose that K ⊆ RN is compact, convex and not empty, and
suppose that f : K → K is continuous. Then f has a fixed point. The same holds true if
K is homeomorphic to a subset of RN that is compact, convex and not empty.

Proof. We prove that x− f(x) has a zero in K. First suppose that K = Br for r > 0. If
there is x ∈ Sr such that f(x) = x then we conclude. If not then x − f(x) 6= 0 for all
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x ∈ Sr. The homotopy h(t, x) = (1− t)x+ t(x− f(x)) = x− tf(x) of idBr to idBr − f
satisfies for x ∈ Sr and t ∈ [0, 1):

|h(t, x)| ≥ |x| − t|f(x)| ≥ (1− t)r > 0.

For t = 1 and x ∈ Sr we have that h(t, x) = x− f(x) 6= 0. Then 0 ∈ Br, (D3) and (D1)
yield deg(id− f,Br, 0) = 1. Hence (D4) implies that x− f(x) = 0 for some x ∈ Br.

More generally, if K ⊆ RN is compact, convex and not empty we extend f to RN

continuously, as in Theorem 2.9, and denote the extension by g. The convexity of K
implies that g(RN) ⊆ K. We find r > 0 sufficient large such that K ⊆ Br. Hence
g(Br) ⊆ K ⊆ Br. By the first part there is a fixed point x of g in Br, that is in K. Since
g|K = f , x is a fixed point of f .

Suppose that K a metric space, f : K → K continuous, A ⊆ RN compact, convex and
not empty, and suppose that ϕ : K → A is a homeomorphism. Then g := ϕ ◦ f ◦ϕ−1 has
a fixed point x in A by the preceding paragraph, and hence ϕ−1(x) is a fixed point of f :

f(ϕ−1(x)) = (ϕ−1 ◦ ϕ ◦ f ◦ ϕ−1)(x) = (ϕ−1 ◦ g)(x) = ϕ−1(x).

3.3 Definition. Suppose that X is a metric space and A ⊆ X. A retraction of X to A
is a continuous map ϕ : X → A such that ϕ|A = idA. In this case A is a retract of X.

3.4 Example. ϕ : RN → B1, given by

ϕ(x) :=
{
x, |x| ≤ 1,
x
|x| , |x| ≥ 1,

is a retraction of RN to B1.

3.5 Corollary (to the theorem of Brouwer). There is no retraction of Br to Sr.

Proof. Arguing by contradiction, suppose that ϕ is a retraction of Br to Sr. Then −ϕ
has a fixed point x in Br by Theorem 3.2. Since ϕ(Br) ⊆ Sr it follows that x ∈ Sr, that
is, x 6= 0 is also a fixed point of ϕ. It follows that x = −ϕ(x) = −x. Contradiction!

3.6 Proposition (Hedgehog Theorem). Suppose that N is odd, Ω ⊆ RN open and
bounded such that 0 ∈ Ω, and f ∈ C(∂Ω,RN). Then there are x ∈ ∂Ω and λ ∈ R such
that f(x) = λx.

Proof. We extend f continuously to Ω using Theorem 2.9. Since N is odd we have
deg(−id,Ω, 0) = −1. If deg(f,Ω, 0) 6= −1 we define the linear homotopy h(t, x) =
(1 − t)f(x) − tx from f to −id. By (D3) there are t0 ∈ [0, 1) and x0 ∈ ∂Ω such that
h(t0, x0) = 0. We obtain

f(x0) = t0
1− t0

x0.

If deg(f,Ω, 0) = −1, use the linear homotopy from f to id, deg(id,Ω, 0) = 1 and a similar
argument.
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3.7 Remark. The name given to the previous theorem is to be undestood as follows:
One cannot comb a hedgehog without a bald spot. To explain: For any r > 0 the ball
BrR3 symbolizes the hedgehog. The spines on SrR3 are given by a continuous vector field
f : Sr → R3. A bald spot is a zero of f . To comb means to put the spines into a position
tangential to Sr, that is, such that f(x) · x = 0 for all x ∈ Sr. If f is continuous and
tangential to Sr, by Proposition 3.6 there are x0 ∈ Sr and λ ∈ R such that f(x0) = λx0.
Since f(x0) is tangential to Sr, λ = 0 and hence f(x0) = 0.

3.8 Example. The hedgehog theorem is not valid in even dimension. For example, for
N = 2 the vector field f on S1 given by

f(x) :=
(

0 −1
1 0

)(
x1

x2

)
is continuous, tangential and has no zero.

3.9 Proposition. Suppose that f ∈ C(RN ,RN) satisfies

(3.2) f(x) · x
|x|

→ ∞ as |x| → ∞.

Then f(RN) = RN .

Proof. Fix y ∈ RN and define h(t, x) := (1− t)f(x) + tx. Suppose that r ≥ 2|y|+ 1 is
large enough such that

f(x) · x
|x|

≥ 2|y|+ 1 for all x ∈ Sr.

We calculate for x ∈ Sr:

(h(t, x)− y) · x = (1− t)f(x) · x+ tr2 − y · x
≥ (1− t)(2|y|+ 1)r + t(2|y|+ 1)r − |y|r = (|y|+ 1)r > 0.

By (D1) and (D3) this implies that deg(f,Br, y) = deg(id, Br, y) = 1, that is, f−1(y) ∩
Br 6= ∅.

3.2 Varying the Space
Suppose that E is a Banach space of finite dimension. Denote by AE the set of admissible
triplets (f,Ω, y) where Ω ⊆ E is open and bounded, f ∈ C(Ω, E) and y ∈ E\f(∂Ω).

If E has the base Λ := {x1, x2, . . . , xN }, we define the linear map ϕ : E → RN by

ϕ(xk) := ek.

By definition, the elements ek form the canonical base of RN . It follows that ϕ ∈ L(E,RN )
is a linear isomorphism and a homeomorphism of E and RN . We call ϕ the canonical
isomorphism between E and RN with respect to the base Λ.
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3.10 Proposition. Suppose that E is a Banach space with dimE = N <∞ and let ϕ
denote the canonical isomorphism between E and RN with respect to a base of E. Suppose
that (f,Ω, y) ∈ AE. Then (ϕ ◦ f ◦ ϕ−1, ϕ(Ω), ϕ(y)) ∈ AN and we define

degE(f,Ω, y) := deg(ϕ ◦ f ◦ ϕ−1, ϕ(Ω), ϕ(y)).

Then degE does not depend on the selection of the base of E and satisfies the properties
(D1)–(D7), replacing RN by E.

Proof. Is clear that (ϕ ◦ f ◦ ϕ−1, ϕ(Ω), ϕ(y)) ∈ AN because ϕ is a homeomorphism and
∂(ϕ(Ω)) = ϕ(∂Ω). Suppose that Λ1 := {x1, x2, . . . , xN } and Λ2 := { y1, y2, . . . , yN } are
two bases of E, and let ϕ1 and ϕ2 denote the canonical isomorphisms of E and RN

with respect to the bases Λ and Γ. We define A := ϕ2 ◦ ϕ−1
1 ∈ L(RN). Suppose that

Ω1 := ϕ1(Ω) and Ω2 := ϕ2(Ω) = A(Ω1). Fix g1 ∈ C1(Ω1,RN) ∩ C(Ω1,RN) and a regular
value z1 of g1 such that with g2 := A ◦ g1 ◦ A−1 and z2 := Az1 we have

‖ϕi ◦ f ◦ ϕ−1
i − gi‖C(Ωi,RN ) ≤

dist(ϕi(y), ∂Ωi)
3 ,(3.3)

|ϕi(y)− zi| ≤
dist(ϕi(y), ∂Ωi)

3 ,(3.4)

for i = 1, 2. Remark 2.37 implies that

(3.5) deg(ϕi ◦ f ◦ ϕ−1
i , ϕi(Ω), ϕi(y)) = deg(gi,Ωi, zi).

Moreover, z2 is a regular value of g2.
Since g−1

2 (z2) = A(g−1
1 (z1)),

sgn Jg2(Ax) = sgn det(Dg2(Ax)) = sgn det(ADg1(x)A−1) = sgn Jg1(x)

if x ∈ g−1
1 (z1). This yields

(3.6)

deg(g2,Ω2, z2) =
∑

x∈g−1
2 (z2)

sgn Jg2(x)

=
∑

x∈A(g−1
1 (z1))

sgn Jg2(x)

=
∑

x∈g−1
1 (z1)

sgn Jg2(Ax)

=
∑

x∈g−1
1 (z1)

sgn Jg1(x)

= deg(g1,Ω1, z1).

Combining equations (3.5) and (3.6) we obtain that

deg(ϕ1 ◦ f ◦ ϕ−1
1 , ϕ1(Ω), ϕ1(y)) = deg(ϕ2 ◦ f ◦ ϕ−1

2 , ϕ2(Ω), ϕ2(y)).

Proving that this degree satisfies properties (D1)–(D7) is only a cuestion of applying
the definition and the same properties for the usual degree.
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3.11 Proposition. Let E denote a Banach space of finite dimension and F a subspace
of E. Suppose moreover that Ω ⊆ E is open and bounded, g ∈ C(Ω, F ), f ∈ C(Ω, E)
is given by f := idE − g and y ∈ F\f(∂Ω). Denoting Ω′ := Ω ∩ F it holds true that
f(Ω′) ⊆ F , (f |Ω′ ,Ω′, y) ∈ AF and

(3.7) degE(f,Ω, y) = degF (f |Ω′ ,Ω′, y).
Proof. Denote h := f |Ω′ ∈ C(Ω′, F ). Since
(3.8) ∂FΩ′ ⊆ ∂EΩ ∩ F,
it follows that (f |Ω′ ,Ω′, y) ∈ AF . By Proposition 3.10 we may assume that E = RN and
F = RM × {0} with M ≤ N .
First suppose that g ∈ C1(Ω,RM) ∩ C(Ω,RM) and y ∈ RM\f(∂Ω) is a regular value

of f . By the definition of f it follows that f−1(y) ⊆ RM and hence that
(3.9) f−1(y) = h−1(y).
For x ∈ f−1(y) we have a representation of Df(x) by a matrix

(3.10) A =
(
IM −B C

0 IN−M

)
where

B := (∂jgi(x))i,j∈{ 1,2,...,M } ∈ RM×M

and
C := (∂jgi(x))i∈{1,2,...,M},j∈{M+1,M+2,...,N} ∈ RM×(N−M).

Clearly
(3.11) Jf (x) = det(A) = det(IM −B) = Jh(x).
This implies that

degE(f,Ω, y) =
∑

x∈f−1(y)

sgn Jf (x) =
∑

x∈h−1(y)

sgn Jh(x) = degF (h,Ω′, y).

In the irregular case we set ρ := dist(y, f(∂Ω)) and approximate g by a map g1 ∈
C1(Ω,RM ) ∩ C(Ω,RM ) such that ‖g − g1‖∞ ≤ ρ/3. Define f1 := id− g1 and h1 := f1|Ω′ .
It follows that ‖f − f1‖∞ ≤ ρ/3. By (3.8) we obtain

‖h− h1‖∞ ≤
ρ

3 ≤ dist(y, h(∂Ω′))/3.

Fix a regular value y1 ∈ RM of h1 such that |y − y1| ≤ ρ/3, using the theorem of Sard.
The formula (3.11), applied to f1 and h1 in place of f and h, implies that y1 is a regular
value of f1. Moreover,

|y − y1| ≤
ρ

3 ≤ dist(y, h(∂Ω′))/3.

Remark 2.37 and the preceding equations yield
degE(f,Ω, y) = degE(f1,Ω, y1) = degF (h1,Ω′, y1) = degF (h,Ω′, y)

and we conclude.
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4 The Degree in Infinite Dimensions

4.1 Introduction
In this section we will extend the topological degree to maps in Banach spaces. The
motivation is that, to prove existence of solutions of differential equations we have to
allow infinite dimensional spaces.

4.1 Example. Suppose that f ∈ C(R,R) is bounded. Consider the ordinary differential
equation

(4.1) u̇(t) = f(u(t)), u(0) = u0

in an interval J := [0, a], for u0 ∈ R. Write u̇ := du/dt. If f is Lipschitz continuous then
Picard-Lindelöf’s Existence and Uniqueness Theorem applies.
Without Lipschitz continuity of f it still holds true for u ∈ E := C(J,R) that u is a

solution of (4.1) if and only if u is a solution of

(4.2) u(t) = u0 +
∫ t

0
f(u(s)) ds.

We define K : E → E by

K(u)(t) := u0 +
∫ t

0
f(u(s)) ds.

Then u ∈ E is a solution of (4.2) if and only if u is a fixed point of K, or equivalently, a
zero of id−K.
Suppose that M := sup f(R). If K(u) = u, then

|u(t)| ≤ |u0|+Ma for t ∈ J,

that is, ‖u‖E ≤ r := |u0|+Ma. Hence all fixed points of K are in BrE. To prove that
there is a solution of (4.1) we need to define a topological degree for the map id−K in
E, and prove that deg(id−K,Br+ε, 0) 6= 0 for ε > 0.

The principal idea is to define a degree for maps of the type id−K in Banach spaces,
where K has a “thin” image A in E. Then one restricts id−K to a subspace of finite
dimension that approximates A, and uses the idea of Proposition 3.11.
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4.2 Compactness in Banach Spaces
4.2 Definition. Suppose that X is a metric space. A subset A ⊆ X is relatively compact
if A is compact. A is precompact if for all ε > 0 there are points x1, x2, . . . , xn ∈ X such
that

A ⊆
n⋃
k=1

Bε(xk).

4.3 Remark. Suppose that X, Y are metric spaces, A ⊆ X and f : X → Y is continuous.

(a) A is relatively compact if and only if every sequence in A has a subsequence that
converges in X.

(b) If A is relatively compact, then f(A) is relatively compact.

(c) If X is complete, then A is relatively compact if and only if A is precompact.

4.4 Lemma. Suppose that E is a normed space, A ⊆ E, X ⊆ E is finite and ε > 0 is such
that A ⊆ X +Bε. If ε1 > ε then there is a finite set Y ⊆ E such that conv(A) ⊆ Y +Bε1.

Proof. Suppose that x ∈ conv(A). Then there are n ∈ N, λk ∈ [0, 1] and xk ∈ A for
k = 1, 2, . . . , n such that

∑n
k=1 λk = 1 and x =

∑n
k=1 λkxk. By the hipothesis we can fix

yk ∈ X such that |xk − yk| < ε for k = 1, 2, . . . , n. It follows that

x =
n∑
k=1

λkyk +
n∑
k=1

λk(xk − yk) ⊆ conv(X) +Bε.

Since x ∈ conv(A) was arbitrary we obtain

(4.3) conv(A) ⊆ conv(X) +Bε.

It is clear that conv(X) is compact because X is finite. Hence there is a set finite Y ⊆ E
such that conv(X) ⊆ Y +Bε1−ε. With (4.3) this implies

conv(A) ⊆ conv(X) +Bε ⊆ Y +Bε1−ε +Bε ⊆ Y +Bε1 .

4.5 Proposition. Suppose that E is a normed space and A ⊆ E precompact. Then
conv(A) is precompact.

Proof. Suppose that ε > 0. Since A is precompact, there is a finite set X ⊆ E such that
A ⊆ X+Bε/2. By Lemma 4.4 there is a finite set Y ⊆ E such that conv(A) ⊆ Y +Bε.

4.3 Compact Operators
4.6 Definition. Suppose that E,F are Banach spaces, A ⊆ E and f : A → F is
continuous. We say that f is compact if f(A) is relatively compact. Denote by K(A,F )
the set of continuous compact operators (maps) from A to F . f is completely continuous
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if f is continuous and if f(B) is relatively compact for all bounded subsets B of A. f
is of finite dimension if there is a subspace of finite dimension in F that contains f(A).
Denote the set of continuous maps of finite dimension from A to F by F(A,F ).
Suppose that A ⊆ E is bounded and closed and f : A → F . f is called proper if

f−1(K) is compact for every compact subset K ⊆ F .

4.7 Proposition. Suppose that E,F are Banach spaces and A ⊆ E is closed and bounded.
Then

(a) F(A,F ) ∩ K(A,F ) is dense in K(A,F ) with respect to the supremum norm.

(b) If f ∈ K(A,E), then I − f is proper.

Proof. (a): Suppose that f ∈ K(A,F ) and ε > 0. There is a finite set Y ⊆ F such that
f(A) ⊆ Y +Bε, because f(A) is compact. Define maps ϕy, ψy : f(A)→ R+

0 by

ϕy(x) := max{ 0, ε− |x− y| } for y ∈ Y

and
ψy(x) := ϕy(x)∑

z∈Y ϕz(x) .

Clearly ϕy is continuous. Since Y +Bε covers f(A), the sum is positive in f(A). Since
the sum is finite, ψy is continuous. For all y ∈ Y and x ∈ f(A) we have ψy(x) ∈ [0, 1]
and

∑
y∈Y ψy(x) = 1.

We define g : A→ F by
g(x) :=

∑
y∈Y

ψy(f(x))y.

Clearly, g is continuous. g has its image in [Y ], the subspace of finite dimension generated
by Y , that is g ∈ F(A,F ). For x ∈ A we obtain from the properties of ψy:

‖g(x)− f(x)‖F =
∥∥∥∥∑
y∈Y

ψy(f(x))(y − f(x))
∥∥∥∥
F

≤
∑
y∈Y

ψy(f(x))‖y − f(x)‖F

≤
∑
y∈Y

ψy(f(x))ε = ε.

It follows that supx∈A‖f(x)− g(x)‖F ≤ ε.
(b): Suppose that K ⊆ F is compact, and suppose that (xn) ⊆ (I − f)−1(K). Write

yn := (I − f)(xn) = xn − f(xn). Since (yn) ⊆ K and (f(xn)) is relatively compact,
passing to a subsequence we may assume that yn → y and f(xn) → z as n → ∞. It
follows that xn = yn + f(xn)→ y + z as n→∞. We conclude using that (I − f)−1(K)
is closed.

4.8 Proposition. Suppose that E,F are Banach spaces, A ⊆ E is closed and bounded,
and suppose that f ∈ K(A,F ). Then there is an extension g ∈ K(E,F ) of f such that
g(E) ⊆ conv(f(A)).
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Proof. By Remark 4.3(c) relative compactness and precompactness coincide in F . We
find the extension g such that g(E) ⊆ conv(A) with Tietze’s Theorem, Theorem 2.9.
Proposition 4.5 implies that conv(f(A)) is relatively compact. Therefore, g ∈ K(E,F ).

4.9 Lemma. Suppose that E,F are Banach spaces, A ⊆ E is closed and bounded, and
f : A→ F continuous and proper. Then f is a closed map.

Proof. Suppose that B ⊆ A is closed, (yn) ⊆ f(B) such that yn → y in F . There is
(xn) ⊆ B such that f(xn) = yn. Since f is proper and { yn }∞n=1∪{y} compact, {xn }∞n=1 is
relatively compact. Passing to a subsequence suppose that xn → x in E. B closed implies
that x ∈ B, that is, f(x) ∈ f(B) and yn = f(xn)→ f(x) = y. Hence y ∈ f(B).

4.4 The Leray-Schauder Degree
4.10 Definition. Suppose that E is a Banach space. Denote by AE the set of admissible
triplets (f,Ω, y) where Ω ⊆ E is open and bounded, f = I − K, K ∈ K(Ω, E) and
y ∈ E\f(∂Ω).

4.11 Remark. Definition 4.10 is consistent with the Definition of AE for Banach spaces
E of finite dimension given in Section 3.2, because in this case I − f is always compact,
that is, f = I −K with compact K.

If (f,Ω, y) ∈ AE, f = I − K with K ∈ K(Ω, E), we set ρ := dist(y, f(∂Ω)). By
Proposition 4.7(b) f is proper, and therefore f(∂Ω) is closed by Lemma 4.9. Hence ρ > 0.
Proposition 4.7(a) provides us with K1 ∈ F(Ω, E) such that supx∈Ω‖K(x)−K1(x)‖E < ρ.
If F is a subspace of E of finite dimension with K1(Ω) ⊆ F and y ∈ F , then we set
ΩF := Ω ∩ F , f1 := (I −K1). In consequence, (f1|ΩF ,ΩF , y) ∈ AF .

4.12 Lemma. In the preceding situation deg(f1|ΩF ,ΩF , y) does not depend on K1 nor
F .

Proof. Suppose that Ki ∈ F(Ω, E) is such that supx∈Ω‖K(x) −Ki(x)‖E < ρ, suppose
that Fi are subspaces of E of finite dimension such that Ki(Ω) ⊆ Fi and y ∈ Fi, and
define Ωi := Ω∩Fi and fi := (I−Ki), for i = 1, 2. Denote F0 := F1 +F2 and Ω0 := Ω∩F0.
Proposition 3.11 yields

(4.4) deg(fi|Ω0
,Ω0, y) = deg(fi|Ωi ,Ωi, y)

for i = 1, 2. Since ∂Ω0 ⊆ ∂Ω ∩ F0, we have dist(y, f(∂Ω0)) ≥ ρ. Put h(t, x) :=
(1− t)f1(x) + tf2(x). If t ∈ [0, 1] and x ∈ ∂Ω0, then

‖h(t, x)− y‖ = ‖(1− t)(f1(x)− f(x)) + t(f2(x)− f(x)) + f(x)− y‖
≥ ‖f(x)− y‖ −

(
(1− t)‖f1(x)− f(x)‖+ t‖f2(x)− f(x)‖

)
≥ ρ−

(
(1− t)‖K1(x)−K(x)‖+ t‖K2(x)−K(x)‖

)
> 0.
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In consequence, y /∈ h(t, ∂Ω0) for all t ∈ [0, 1]. This implies that

(4.5) deg(f1|Ω0
,Ω0, y) = deg(f2|Ω0

,Ω0, y),

and together with (4.4) we conclude.

4.13 Definition. In the situation of Lemma 4.12 we define the Leray-Schauder Degree
by

(4.6) deg(f,Ω, y) := deg(f1|ΩF ,ΩF , y).

Without proof we formulate the

4.14 Theorem. For a Banach space E the map deg : AE → Z has the properties (D1)–
(D7), where h in (D3) has the form h = IE − H, that is, h(t, x) = x − H(t, x), and
H ∈ K([0, 1]× Ω, E).

4.15 Remark. One can prove that deg is the unique map AE → Z with properties
(D1)–(D3).

4.16 Theorem (Schauder). Suppose that E is a Banach space, A ⊆ E is not empty,
bounded, closed and convex, and K : A→ A compact. Then K has a fixed point.

Proof. By Proposition 4.8 we can extend K to E by K1 ∈ K(E,E) such that K1(E) ⊆ A.
Selecting r > 0 such that A ⊆ BrE, we define the continuous operator H(t, x) := tK1(x)
for (t, x) ∈ [0, 1]× BrE. If (tn) ⊆ [0, 1] and (xn) ⊆ Br, then by the compactness of K1
in Br we may assume that (tn) and (K1(xn)) converge, after passing to a subsequence.
It follows that (tnK1(xn)) converges. This implies that H is compact. For the homotopy
h := I −H it holds true that 0 /∈ h(t, SrE) if t ∈ [0, 1] because tK1(x) 6= x if x ∈ SrE
and t ∈ [0, 1]. Properties (D3) and (D1) yield

deg(I −K1, Br, 0) = deg(I, Br, 0) = 1,

and hence that K1 has a point fixed x0 in Br. Clearly x0 ∈ A, and therefore x0 is a fixed
point of K.

4.17 Theorem (Schäfer). Suppose that E is a Banach space and suppose that K : E → E
is completely continuous. Define

Λ := {x ∈ E | x = tK(x) for some t ∈ [0, 1] }.

If Λ is bounded then K has a fixed point.

Proof. If Λ is bounded then there is r > 0 such that Λ ⊆ Br. The restriction of K to Br is
a compact operator. As in the proof of Theorem 4.16 we obtain that H : [0, 1]×Br → E,
given by H(t, x) := tK(x), is compact. If t ∈ [0, 1] then x 6= tK(x) for x ∈ Sr and
therefore 0 /∈ h(t, Sr), where h := IE −H. In consequence

deg(I −K,Br, 0) = deg(I, Br, 0) = 1,

that is, K has a fixed point in Br.
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4.18 Theorem. Suppose that E is a Banach space, F a closed subspace of E, Ω ⊆ E is
open and bounded, K ∈ K(Ω, F ) and y ∈ F is such that (f,Ω, y) ∈ AE for f := I −K.
Set Ω′ := Ω ∩ F . Then (f |Ω′ ,Ω′, y) ∈ AF and

degE(f,Ω, y) = degF (f |Ω′ ,Ω′, y).

Proof. Suppose that K1 ∈ F(Ω, F ) is an approximation such that ‖K − K1‖∞ <
dist(y, f(∂Ω)). Suppose moreover that F1 is a subspace of F of finite dimension such
that it contains the image of Ω under K1 and y. Then

deg(f,Ω, y) = deg(f |Ω∩F1
,Ω ∩ F1, y) = degF (f |Ω′ ,Ω′, y)

by Proposition 3.11.

4.5 The Degree of a Linear Operator
We calculate the degree of I −K if K is a linear completely continuous operator and
I −K is a Banach space isomorphism. This case is important in applications.

4.19 Definition. A linear completely continuous operator is called a compact linear
operator. Denote by Lc(E,F ) the linear and completely continuous operators from E
into F if E,F are normed spaces.

4.20 Reminder. Suppose that E is a real Banach space and L ∈ L(E) a bounded linear
operator in E. The resolvent set ρ(L) of L is the set of values λ ∈ R such that λI − L is
bijective. By the open mapping theorem, (λI − L)−1 ∈ L(E) in this case. The spectrum
σ(L) of L is the complement of ρ(L) in R. It always holds true that σ(L) is compact and
contained in B‖L‖(0;E). A number λ ∈ R such that N (λI − L) 6= {0} is an eigenvalue
of L.

4.21 Proposition. Suppose that E is a Banach space of infinite dimension and K ∈ L(E)
compact. Then the following properties are satisfied:

(a) σ(K) is at most countable and contains 0. If σ(K) is infinite, then it consists of 0
and a sequence of eigenvalues that converges to 0.

(b) For all λ ∈ σ(K)\{0} there are unique closed subspaces N ∗(λ) and R∗(λ) that are
invariant under K such that E = N ∗(λ)⊕R∗(λ), dim(N ∗(λ)) <∞, σ(K|N ∗(λ)) =
{λ} and σ(K|R∗(λ)) = σ(K)\{λ}. N ∗(λ) is called the generalized eigenspace of
the eigenvalue λ. The operator (λI − K) : R∗(λ) → R∗(λ) is a Banach space
isomorphism.

(c) If λ, µ ∈ σ(K)\{0} are distinct, then N ∗(µ) ⊆ R∗(λ).

Sketch of proof. Item (a) is standard and can be found in texts on functional analysis.
The idea for item (b) is to show, as in the finite dimensional case, that for λ ∈ σ(K)\{0}
there are minimal k(λ), `(λ) ∈ N such that N ((λI −K)k(λ)) = N ((λI −K)k(λ)+1) and
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R((λI − K)`(λ)) = R((λI − K)`(λ)+1). It then follows that k(λ) = `(λ). One defines
N ∗(λ) := N ((λI−K)k(λ)) andR∗(λ) := R((λI−K)k(λ)) and proves the stated properties.
To show (c) suppose that λ, µ ∈ σ(K)\{0} are distinct and assume that x ∈ N ∗(µ).

By the decomposition E = N ∗(λ) ⊕ R∗(λ) there are unique elements y ∈ N ∗(λ) and
z ∈ R∗(λ) such that x = y + z. Set L := (µI − K)k(µ). Then 0 = Lx = Ly + Lz.
Obviously, N ∗(λ) and R∗(λ) are invariant under L. This implies that Ly ∈ N ∗(λ) and
Lz ∈ R∗(λ), that is, Ly = Lz = 0. Since λ is the unique eigenvalue of K in N ∗(λ), L is
injective in N ∗(λ), and therefore y = 0. Hence x = z ∈ R∗(λ).

4.22 Remark. In the preceding proposition, if λ ∈ σ(K)\{0}, then dimN (λI −K) is
called the geometric multiplicity and dimN ∗(λ) the algebraic multiplicity of λ.

4.23 Remark. If K ∈ Lc(E) and I −K is injective, then 1 is not an eigenvalue of K.
Since all elements of σ(K)\{0} are eigenvalues, 1 /∈ σ(K). This implies that I −K is a
Banach space isomorphism.

4.24 Theorem. Suppose that K ∈ Lc(E) is such that I −K is injective. Let m denote
the sum of the algebraic multiplicities of the eigenvalues λ > 1 of K (these coincide with
the negative eigenvalues of I −K). Then

deg(I −K,B1, 0) = (−1)m.

Proof. By Proposition 4.21(a) there is only a finite number λ1, λ2, . . . , λn of eigenvalues
of K larger than 1. According to Proposition 4.21(b) we form the spaces N ∗(λi) and
R∗(λi) and we denote

N :=
n⊕
i=1

N ∗(λi) and R :=
n⋂
i=1

R∗(λi).

We need to show that

(4.7) E = N ⊕R.

To prove R∩N = {0}, suppose that x ∈ R∩N . There are xi ∈ N ∗(λi), ai ∈ R, such that
x =

∑n
i=1 aixi. By Proposition 4.21(c)

∑
i≥2 aixi ∈ R∗(λ1). Moreover, x ∈ R ⊆ R∗(λ1).

Hence a1x1 = x−
∑

i≥2 aixi ∈ R∗(λ1)∩N ∗(λ1) = {0}. Similarly one shows that aixi = 0
for i = 2, . . . , n. It follows that x = 0. To see E ⊆ N + R, assume x ∈ E. There
are xi ∈ N ∗(λi), yi ∈ R∗(λi) such that x = xi + yi for all i = 1, 2, . . . , n. Using
Proposition 4.21(c) we obtain for every k ∈ {1, 2, . . . , n}:

x−
n∑
i=1

xi = x− xk −
∑
i 6=k

xi = yk −
∑
i 6=k

xi ∈ R∗(λk).

Hence x−
∑n

i=1 xi ∈ R. Since
∑n

i=1 xi ∈ N , this proves x ∈ N +R.
It is clear from Proposition 4.21 that N and R are invariant under K and that

(4.8) σ(K|N ) ⊆ (1,∞) and σ(K|R) ⊆ (−∞, 1).
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Denote by P,Q the pair of projections corresponding to the splitting (4.7) and define
the homotopy h(t, ·) := I −K(P + (1− t)Q) from I −K to I −KP . Clearly, the map
[0, 1]×B1 → E, (t, x) 7→ K[Px+ (1− t)Qx] is compact. If t ∈ [0, 1] and x ∈ E satisfy
h(t, x) = 0, then Px + Qx = x = KPx + (1− t)KQx. By the invariance of N and R
under K, KPx ∈ N and KQx ∈ R. Therefore, KPx = Px, which implies that Px = 0,
since K does not have the eigenvalue 1. On the other hand, we have (1− t)KQx = Qx.
If t = 1 then Qx = 0. If t < 1 then 1/(1− t) > 1, and KQx = 1

1−tQx implies Qx = 0 by
(4.8). This proves x = 0 and yields that h is an admissible homotopy on B1. Therefore,
Theorem 4.18 implies

deg(I −K,B1, 0) = deg(I −KP,B1, 0)
= deg((I −K)|N , B1 ∩N , 0) since KP (E) ⊆ N
= (−1)m by Proposition 2.22.

In the last equality we have used that dimN = m and that (I −K)|N has only negative
eigenvalues.

4.6 The Index of an Isolated Zero
It is often convenient to suppose that there is only a finite number of solutions and then
use the additivity of the degree to show multiplicity of solutions. The following notion
simplifies this argument:
4.25 Definition. Suppose that E is a Banach space, x ∈ E, Ω ⊆ E is a neighborhood
of x and K : Ω→ E is completely continuous. Suppose moreover that x is the unique
zero of I − K in Ω. Then the index of I − K in x (or the fixed point index of K in
x) is the integer ind(K, x) := limr→0 deg(I −K,Br(x), 0). Note that by property (D2)
deg(I −K,Br(x), 0) is independent of r > 0 as long as r is small enough.

Since the index is a locally defined object, it can be calculated for differentiable maps
by using their derivatives. To see this we need the
4.26 Lemma. Suppose that E,F are Banach spaces, Ω ⊆ E is open and K : Ω→ F is
completely continuous and Frechet differentiable at some x ∈ Ω. Then DK(x) ∈ Lc(E,F ).
Proof. For y ∈ E set ω(y) := K(x+ y)−K(x)− DK(x)y. The differentiability of K at
x implies that ω(y)/‖y‖ → 0 as ‖y‖ → 0.
It suffices to show that DK(x)B1 is precompact. Let ε > 0 and pick δ > 0 such that

x+Bδ ⊆ Ω and ω(y)/‖y‖ ≤ ε for y ∈ Bδ. Since K(x+Bδ) is compact, there is a finite
set X ⊆ E such that −K(x) +K(x+Bδ) ⊆ X +Bεδ. For y ∈ Bδ we have

DK(x)y = −K(x) +K(x+ y)− ω(y)
and ‖ω(y)‖ ≤ εδ. Hence

δDK(x)B1 = DK(x)Bδ ⊆ −K(x) +K(x+Bδ) +Bεδ ⊆ X +B2εδ

and therefore DK(x)B1 ⊆ 1
δ
X +B2ε. Since ε > 0 was arbitrary, DK(x)B1 is precompact.
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4.27 Proposition. In the situation of Definition 4.25 suppose that K is Frechet differ-
entiable in x such that I −DK(x) is injective. Then

ind(K, x) = deg(I −DK(x), B1, 0).

In particular, |ind(K, x)| = 1.

Proof. Without loss of generality we may assume that x = 0 and therefore K(0) = 0.
Define H(t, x) := (1− t)K(x) + tDK(0)x for (t, x) ∈ [0, 1]× Ω. Then H is completely
continuous. We will show that IE −H is admissible in a sufficiently small ball Br. If
this were not true there would exist sequences (tn) ⊆ [0, 1] and xn → 0 in E such that
H(tn, xn) = xn for all n. It would follow that

(IE −DK(0)) xn
‖xn‖

= (1− tn)(K(xn)−DK(0)xn)
‖xn‖

→ 0 as n→∞.

This would imply that 0 ∈ σ(IE−DK(0)) and hence that 0 is an eigenvalue of IE−DK(0),
by the compactness of DK(0), in contradiction with the injectivity of IE − DK(0).
Therefore, there is r0 > 0 such that for every r ∈ (0, r0] it holds true that deg(IE −
K,Br, 0) = deg(IE −DK(0), Br, 0) = deg(IE −DK(0), B1, 0).

4.28 Remark. Without supposing the injectiveness of the derivative the preceding
proposition is not true. To see this, consider E := R and K(x) := x − x2. Then 0 is
the unique fixed point of K but ind(K, 0) = deg(id −K,B1, 0) = 0 since the function
(id−K)(x) = x2 is positive in −1 and 1. Here (id−DK(0))(x) = x−DK(0)x ≡ 0, that
is, id−DK(0) is not injective.
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5 Applications to Partial Differential
Equations

5.1 Boundary Value Problems
In this section let Ω ⊆ RN be a bounded domain with smooth boundary. We are
interested in strong solutions u ∈ H2(Ω) ∩H1

0 (Ω) of the elliptic problem

(5.1) −∆u(x)− λu(x) = f(u(x)), for almost every x ∈ Ω,

where λ ∈ R and f : Ω× R→ R is locally Hölder continuous. By regularity theory, any
strong solution of (5.1) is also a classical solution, i.e. a function in the space C2(Ω)∩C(Ω)
that satisfies

(5.2)
{
−∆u(x)− λu(x) = f(u(x)), for all x ∈ Ω,

u(x) = 0, for all x ∈ ∂Ω.

The linear problem related to (5.1) is

(5.3) −∆u(x)− λu(x) = g(x), for almost every x ∈ Ω.

There is a set σ(−∆) ⊆ R (the spectrum of −∆ with respect to homogeneous Dirichlet
conditions on the boundary) such that if λ ∈ R\σ(−∆), then for all g ∈ L2(Ω) there is a
unique function u = Lg ∈ H2(Ω) ∩H1

0 (Ω) that is a solution of (5.3). Moreover,

(5.4) L = (−∆− λ)−1 ∈ L(L2(Ω), H2(Ω) ∩H1
0 (Ω)).

Since the embedding H2(Ω) ↪→ L2(Ω) is compact, also the linear operator L : L2(Ω)→
L2(Ω) is compact.

5.2 An Application of A Priori Bounds
5.1 Theorem. Suppose that λ ∈ R\σ(−∆), and that f : R→ R is Lipschitz continuous
and satisfies lim|s|→∞ f(x, s)/s = 0. Then Equation (5.2) has a classical solution.

Proof. For u ∈ L2 we define F (u) : Ω→ R by

F (u)(x) := f(u(x)).
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Denote by C1 a Lipschitz constant for f . For any u, v ∈ L2 it follows that F (u), F (v)
are measurable. Moreover,

|F (u)(x)| ≤ |f(u(x))− f(0)|+ |f(0)| ≤ C1|u(x)|+ |f(0)|

and
|F (u)(x)− F (v)(x)| = |f(u(x))− f(v(x))| ≤ C1|u(x)− v(x)|.

Therefore, F (u) ∈ L2, |F (u)|2 ≤ |f(0)||Ω|1/2 + C1|u|2 and |F (u)− F (v)|2 ≤ C1|u− v|2.
We conclude that F is continuous and maps bounded subsets of L2 into bounded subsets
of L2.
As before we set L := (−∆− λ)−1. There is C > 0 such that

|f(s)| ≤ C + |s|
2‖L‖ for all s ∈ R.

This implies the existence of (another) C > 0 such that

(5.5) |F (u)|2 ≤ C + |u|2
2‖L‖ for all u ∈ L2.

Finding a solution of (5.1) is equivalent to finding a fixed point of K := L ◦ F :

(−∆ + λ)u = F (u)⇔ u = LF (u) = K(u).

We will apply Schäfer’s Theorem, Theorem 4.17: First we note that K is absolutely
continuous by the properties of F and since L is compact as an operator L2 → L2.
Suppose that u ∈ L2 satisfies u = tK(u) for some t ∈ [0, 1]. Then by (5.5)

|u|2 ≤ ‖K(u)‖ ≤ ‖L‖|F (u)|2 ≤ C‖L‖+ 1
2 |u|2,

i.e. |u|2 ≤ 2C‖L‖. This is the necessary a priori bound on solutions u of u = tK(u).
Now Schäfer’s Theorem implies the existence of a fixed point for K.

5.3 An Exact Multiplicity Result
Denote by 0 < λ1 < λ2 ≤ λ3 ≤ . . . the eigenvalues of −∆ with Dirichlet boundary
conditions on the bounded smooth domain Ω ⊆ RN .

5.2 Theorem. Consider f ∈ C2(R) with the properties f(0) = 0, f ′′(t)t > 0 for t 6= 0,
limt→±∞ f

′(t) = b± and

(5.6) λk−1 < f ′(0) < λk < b± < λk+1.

Then

(5.7)
{
−∆u = f(u), in Ω,

u = 0, on ∂Ω,

has exactly three strong solutions: the trivial solution u ≡ 0 and two nontrivial solutions.
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Proof. Set L := (−∆)−1 and K(u) := LF (u) as before. Since f ′ ist strictly increasing
on [0,∞) and strictly decreasing on (−∞, 0], we have f ′(t) ∈ [f ′(0), λk+1) for all t.
Since f ′(0) > 0, it follows that |f(t)| ≤ λk+1|t| for all t and F ∈ C1(L2, L2) with
(DF (u)v)(x) = f ′(u(x))v(x). Hence K ∈ C1(L2, H2) with DK = L ◦ DF . Since
L ∈ L(L2, H2), L : L2 → H1

0 is a compact linear operator. Therefore, K : L2 → H1
0 is

completely continuous.
For any bounded and measurable function h on Ω we denote by µi(h) the i-th positive

eigenvalue of the compact linear operator v 7→ L[hv], counted in decreasing order. By
the variational characterization of eigenvalues we have

(5.8) µi(h) = sup
Λ≤H1

0
dim Λ=i

min
v∈Λ\{0}

〈Lhv, v〉
‖v‖2 = sup

Λ≤H1
0

dim Λ=i

min
v∈Λ\{0}

∫
Ω hv

2

‖v‖2 .

Here we use the norm ‖·‖ in H1
0 given by ‖v‖2 =

∫
Ω|∇v|

2 and the associated scalar
product 〈·, ·〉. It follows easily that if h1 ≤ h2 on Ω and h1 < h2 on a set of positive
measure, then µi(h1) < µi(h2) for all i ∈ N. For h ≡ λi we find

(5.9) µi(λi) = λi · sup
Λ≤H1

0
dim Λ=i

min
v∈Λ\{0}

∫
Ω v

2

‖v‖2 = λi ·
1
λi

= 1.

Note that µi(f ′(u)) is the i-th eigenvalue of DK(u).
We consider fixed points of K and claim that if K(u) = u, then u is isolated as a fixed

point of K and

(5.10) ind(K, u) =
{

(−1)k−1, u = 0,
(−1)k, u 6= 0.

If u = 0 then µk(f ′(0)) < µk(λk) = 1 and µk−1(f ′(0)) > µk−1(λk−1) = 1. Hence 1 is not
an eigenvalue of DK(0) and there are precisely k− 1 eigenvalues larger than 1 for DK(0).
If u 6= 0 then from −∆u = f(u) = (f(u)/u)u we obtain j ∈ N such that µj(f(u)/u) = 1.
Observe that f(t) =

∫ t
0 f
′ implies

λk−1 <
f(t)
t

< λk+1 for all t ∈ R(5.11)
and

f(t)
t

< f ′(t) for t 6= 0.(5.12)

It follows from (5.11) that µk+1(f(u)/u) < µk+1(λk+1) = 1 and µk−1(f(u)/u) > µk−1(λk−1) =
1. This yields j = k. Since u 6= 0 on a set of positive measure we infer from (5.12) that
µk(f ′(u)) > µk(f(u)/u) = 1 and from the hypotheses that µk+1(f ′(u)) < µk+1(λk+1) = 1.
Hence 1 is not an eigenvalue of DK(u) and there are precisely k eigenvalues larger than 1
for DK(u). In both cases I −DK(u) is an isomorphism. The implicit function theorem
implies that u is an isolated zero of I −K. By Proposition 4.27 (5.10) holds true.
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Now we prove that there is R > 0 such that |u|2 < R for all solutions of (5.7) and

(5.13) deg(I −K,BRL
2, 0) = (−1)k.

Pick b ∈ (λk, λk+1) and define the completely continuous operator H(t, u) := (1−t)K(u)+
tbu. We prove that I −H is admissible on BR for the value 0 if R is large enough. If
this is false then there exist sequences (ti) ⊆ [0, 1] and ui ∈ L2 such that |u|2 →∞ and
H(ti, ui) = ui. Define wi := ui/|ui|2. It follows that

L

[(
(1− ti)

f(ui)
ui

+ tib

)
wi

]
= wi

for all i. Since L ∈ Lc(L2, H1
0 ), we may assume that ti → t∗ and wi → w∗ in H1 and

pointwise almost everywhere. Hence

L
[
((1− t∗)ψ + t∗b)︸ ︷︷ ︸

h

w∗
]

= w∗

with

ψ(x) =


b+ w∗(x) > 0
b− w∗(x) < 0
b w∗(x) = 0.

There is j ∈ N with µj(h) = 1. On the other hand, λk < h < λk+1 implies µk+1(h) <
µk+1(λk+1) = 1 and µk(h) > µk(λk) = 1, a contradiction. In particular, there is no
sequence of solutions of (5.7) with L2-norm tending to ∞. Hence all solutions of (5.7)
are contained in BR for some fixed large R and I − H is admissible on BR for the
value 0. From µk+1(b) < µk+1(λk+1) = 1 and µk(b) > µk(λk) = 1 it follows that
deg(I − b, BR, 0) = (−1)k and hence (5.13).

To conclude we recall that since I −K is proper on BR and all zeros are isolated, the
set of zeros of I − K is finite. Denote by m the number of nontrivial solutions. The
excision property (D2), (5.10) and (5.13) imply

(−1)k = (−1)k−1 +m(−1)k,

that is, m = 2.
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