A Cauchy-Schwarz Type Inequality for Bilinear Integrals on Positive Measures

Nils Ackermann

April 2004

Abstract

If $W : \mathbb{R}^n \to [0, \infty]$ is Borel measurable, define for σ -finite positive Borel measures μ, ν on \mathbb{R}^n the bilinear integral expression

$$I(W; \mu, \nu) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} W(x - y) \, d\mu(x) \, d\nu(y) \; .$$

We give conditions on W such that there is a constant $C \ge 0$, independent of μ and ν , with

 $I(W; \mu, \nu) \leq C \sqrt{I(W; \mu, \mu)I(W; \nu, \nu)} .$

Our results apply to a much larger class of functions W than known before.

1. Introduction and Results

Given a Borel function $W \colon \mathbb{R}^n \to [0, \infty]$, for σ -finite positive measures μ, ν on \mathbb{R}^n define the integral

$$I(W; \mu, \nu) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} W(x - y) \, d\mu(x) \, d\nu(y)$$

Denote for $C \ge 0$ by $\mathcal{W}(n, C)$ the class of Borel functions $W \colon \mathbb{R}^n \to [0, \infty]$ such that for all σ -finite positive measures μ, ν on \mathbb{R}^n

(1.1)
$$I(W; \mu, \nu) \le C\sqrt{I(W; \mu, \mu)I(W; \nu, \nu)}$$

holds. Moreover, denote

$$\mathcal{W}(n) := \bigcup_{C \ge 0} \mathcal{W}(n, C) \; .$$

If W is an even function and the symmetric bilinear form $I(W; \cdot, \cdot)$ is positive semidefinite, then $W \in W(n, 1)$ (Cauchy-Schwarz' inequality). Hence we may regard (1.1) as a generalized form of the Cauchy-Schwarz inequality.

An even function W such that $I(W; \cdot, \cdot)$ is positive semidefinite is called *positive definite*. Roughly speaking, positive definiteness of a function corresponds to non negativity of its Fourier transform [5, 6]. The only result regarding (1.1) the author is aware of that goes beyond positive definite functions is given by Mattner [4, Sect. 5.1]: If $\|\cdot\|$ is any norm on \mathbb{R}^n , $h: [0, \infty) \to [0, \infty]$ is decreasing, and W is given by $W(x) := h(\|x\|)$, then $W \in \mathcal{W}(n)$. Theorem 1.5 below recovers this statement and extends it by allowing h to be non monotone. Theorem 1.2, the main result of the present paper, yields a criterion for membership in $\mathcal{W}(n)$ for functions W that can not be written as $h \circ p$ with a seminorm p on \mathbb{R}^n .

The study of property (1.1) is motivated by the partial differential equation

(1.2)
$$-\Delta u + Vu = (W * u^2)u \qquad u \in H^1(\mathbb{R}^n)$$

Here * denotes convolution, V in $L^{\infty}(\mathbb{R}^n)$ is periodic, and 0 lies in a gap of the spectrum of $(-\Delta + V)$, cf. [1]. One is interested in the existence of nontrivial solutions to (1.2). For the special case n = 3 and $W(x) = 1/||x||_2$ the problem was settled in [2] by using the fact that this particular function W is positive definite. In [1] it is shown that $W \in \mathcal{W}(n)$ (together with appropriate growth conditions) is sufficient to obtain a nontrivial solution of (1.2).

1.1. Main Results

The statement of our Theorems requires to introduce some notation and definitions. For a topological space X denote by $\mathcal{P}(X)$ the set of Borel functions $f: X \to [0, \infty]$. For n in \mathbb{N} denote by $\mathcal{C}(n)$ the class of subsets of \mathbb{R}^n that are closed, convex, and symmetric (i.e. -A = A). The dimension dim A of a convex subset A of \mathbb{R}^n is the dimension of the affine hull of A.

Definition 1.1. For $X, A \subseteq \mathbb{R}^n, X \neq \emptyset$, put

 $\kappa(X, A) := \inf\{m \in \mathbb{N} \mid X \text{ can be covered by } m \text{ translates of } A\}$

and

$$\alpha(X) := \inf\{m \in \mathbb{N} \mid \exists A \in \mathcal{C}(n) \colon \dim A = n, A \subseteq X \text{ and } \kappa(X, A) = m\}.$$

For $X = \emptyset$ set $\kappa(\emptyset, A) := 0$ and $\alpha(\emptyset) := 0$.

Given a set X, a map $W \colon X \to \mathbb{R}$ and t in \mathbb{R} denote

$$[W]_t := \{ x \in X \mid W(x) \ge t \}.$$

Furthermore, define the class $\mathcal{A}(n)$ by

$$\mathcal{A}(n) := \left\{ W \in \mathcal{P}(\mathbb{R}^n) \; \middle| \; \limsup_{t \to 0} \alpha([W]_t) + \limsup_{t \to \infty} \alpha([W]_t) < \infty \right\}.$$

Our main result then reads:

Theorem 1.2. For every *n* in \mathbb{N} the inclusion $\operatorname{conv}(\mathcal{A}(n)) \subseteq \mathcal{W}(n)$ holds.

Remark 1.3. It will be shown in the proof of Theorem 1.2 that $\mathcal{W}(n)$ is a convex cone. Obviously, $\mathcal{A}(n)$ is a cone. The Example 1.6 given below demonstrates that $\mathcal{A}(n)$ is not convex.

The present author does not know whether a function in W(n) that is sufficiently regular, say continuous, must necessarily belong to conv $(\mathcal{A}(n))$.

A simpler criterion for membership in W(n) can be formulated in the case of the composition of a map with a seminorm. To state it we introduce further concepts and notation.

Definition 1.4. For a subset Y of $[0, \infty)$ put $\lambda(Y) := \sup\{t > 0 \mid [0, t] \subseteq Y\}$ and

$$\beta(Y) := \begin{cases} 0 & Y = \emptyset \\ \infty & \lambda(Y) = -\infty \text{ and } Y \neq \emptyset \\ \sup(Y)/\lambda(Y) & \text{otherwise.} \end{cases}$$

Here we set $\infty/a := \infty$ if a > 0 and $\infty/\infty := 1$.

We introduce

$$\mathcal{B} := \left\{ h \in \mathcal{P}([0,\infty)) \mid \limsup_{t \to 0} \beta([h]_t) + \limsup_{t \to \infty} \beta([h]_t) < \infty \right\}.$$

Our second result then reads:

Theorem 1.5. Suppose that $h \in \mathcal{P}([0, \infty))$ and that p is a seminorm on \mathbb{R}^n . If $h \in \mathcal{B}$ then $h \circ p \in \mathcal{A}(n)$. If $h \circ p \in \mathcal{A}(n)$ and codim(ker $p) \ge 2$ then $h \in \mathcal{B}$.

We provide some examples to illustrate the concepts introduced so far:

Example 1.6. Denote by *h* the characteristic function of [0, 1], taken as a map from $[0, \infty)$ into $[0, \infty]$. Then $h \in \mathcal{B}$. For i = 1, 2 define W_i as a map in $\mathcal{P}(\mathbb{R}^2)$ by $W_i(x_1, x_2) := h(|x_i|)$. Theorem 1.5 implies that $W_i \in \mathcal{A}(2)$ for i = 1, 2, but clearly $W := W_1 + W_2 \notin \mathcal{A}(2)$. Since $\mathcal{A}(2)$ is a cone this implies that $\mathcal{A}(2)$ is not convex. Nevertheless, $W \in \mathcal{W}(2)$ by Theorem 1.2 and since $\mathcal{W}(2)$ is a convex cone.

Example 1.7. We construct a function W in $\mathcal{A}(n)$ that is not even, and hence is neither positive definite nor of the form $h \circ p$ with h in $\mathcal{P}([0, \infty))$ and p a seminorm on \mathbb{R}^n . Pick x_0 in $\mathbb{R}^n \setminus \{0\}$ and set

$$W_0(x) := \frac{1}{\|x\|_2}$$

$$W(x) := W_0(x) + W_0(x - x_0) .$$

Denoting by D(r, x) the closed ball of radius r > 0 with center x, it follows easily that

$$D(1/t, 0) \subseteq [W]_t \subseteq D(2/t, 0) \cup D(2/t, x_0)$$

for all t > 0. This implies that $W \in \mathcal{A}(n)$.

Example 1.8. We show that the assumption on codim(ker p) used in Theorem 1.5 is not purely technical. If p is a seminorm on \mathbb{R}^n with codim(ker p) = 0 then trivially $h \circ p \in \mathcal{A}(n)$ for arbitrary h in $\mathcal{P}([0, \infty))$. Given the seminorm p(x) := |x| in \mathbb{R} with codim(ker p) = 1, we construct h in $\mathcal{P}([0, \infty))$ such that $W := h \circ p \in \mathcal{A}(1)$ but $h \notin \mathcal{B}$. Put

$$h(s) := \begin{cases} \infty & s = 0\\ \exp(-(k-1)^2) & s = \exp(k^2) \text{ for some } k \text{ in } \mathbb{N}\\ 1/s & \text{otherwise.} \end{cases}$$

For t > 1 we obtain $[h]_t = [0, 1/t]$, and for $0 < t \le 1$ we obtain

(1.3)
$$[h]_t = [0, 1/t] \cup \left\{ \exp\left(\left(1 + \left[\sqrt{-\log t} \right] \right)^2 \right) \right\} .$$

Recall that [*a*] denotes the largest integer less than or equal to *a* if $a \in \mathbb{R}$. From (1.3) it is clear that $\alpha([W]_t) \leq 3$ for all $t \geq 0$, so $W \in \mathcal{A}(1)$. On the other hand, for $t_k := \exp(-k^2)$ we find

$$\beta([h]_{t_k}) = \exp((1+k)^2) \exp(-k^2) = \exp(1+2k)$$

and therefore $\limsup_{t\to 0} \beta([h]_t) = \infty$. Hence $h \notin \mathcal{B}$.

1.2. General Notation

In \mathbb{R}^n denote by $\|\cdot\|_p$ for p in $[1, \infty]$ the standard $l^p(n)$ -norm. In the case of p = 2 we write $x \cdot y$ for the standard Euclidean scalar product of elements x, y in \mathbb{R}^n . If V is a subspace of \mathbb{R}^n , denote by V^{\perp} the orthogonal subspace with respect to the standard scalar product.

The power set of a set X will be written 2^X . The cardinality of X is denoted by |X|. Some operators used are: conv A for the convex hull of A, cl A, int A, and ∂A for closure, interior, and boundary of a subset A of a topological space.

A parallelotope is a rectangular parallelepiped.

2. Some Convex Geometry

The next Lemma allows us to deal with unbounded sets in C(n) in a convenient manner.

Lemma 2.1. If $A \in C(n)$ then there is a unique subspace V of \mathbb{R}^n such that $B := A \cap V^{\perp} \in C(n)$ is compact and A = B + V.

Proof. First we remark: If a set A in C(n) includes a ray (a set $\{x + ty \mid t \ge 0\}$ for some x, y in \mathbb{R}^n), then it includes the 1-dimensional subspace parallel to that ray. If A includes a translate of a subspace V of \mathbb{R}^n then A includes V.

Now fix A in $\mathcal{C}(n)$. From [3, Lemma 2.5.4] we obtain a unique subspace V of \mathbb{R}^n of maximal dimension such that a translate of V and thus V is included in A. Moreover, by that lemma it also holds that $B := A \cap V^{\perp} \in \mathcal{C}(n)$ does not include a line (the translate of a 1-dimensional subspace) and A = B + V. If B was not bounded then it included a ray

by [3, Lemma 2.5.1]. Since B is symmetric it therefore included a line also. Contradiction. Since A is closed B must therefore be compact.

If, on the other hand, for some subspace V of \mathbb{R}^n , $B = A \cap V^{\perp}$ is compact and A = B + V, then V is included in A. If A includes a translate of another subspace W, and thus includes W, then $W \subseteq V$. Hence V has maximal dimension among the subspaces included in A, and it is unique, again by Lemma 2.5.4 *loc.cit*.

Definition 2.2. We call the pair (B, V) given for A in $\mathcal{C}(n)$ by Lemma 2.1 the *splitting of A*.

Definition 2.3. Denote for $X \subseteq \mathbb{R}^n$ by

$$\operatorname{ccs} X := \operatorname{cl}(\operatorname{conv} \frac{1}{2}(X - X)) \in \mathcal{C}(n)$$

the closed convex hull of the symmetrization of X.

Remark 2.4. For $A, B \subseteq \mathbb{R}^n$ we have $\operatorname{conv}(A + B) = \operatorname{conv} A + \operatorname{conv} B$. Thus

$$\operatorname{ccs} X = \operatorname{cl} \frac{1}{2} (\operatorname{conv} X - \operatorname{conv} X)$$
.

From this also follows that ccs(X + Y) = ccs X + ccs Y if one of X and Y is relative compact. Moreover, ccs A = A if $A \in C(n)$.

Definition 2.5. If $X \subseteq \mathbb{R}^n$ and (A, V) is the splitting of $\operatorname{ccs} X$, put $\gamma(X) := \dim V$.

Lemma 2.6. The map $\gamma: 2^{\mathbb{R}^n} \to \{0, 1, 2, ..., n\}$ is monotone increasing with respect to the partial order induced on $2^{\mathbb{R}^n}$ by inclusion. If $X \subseteq Y \subseteq \mathbb{R}^n$ and $\gamma(X) = \gamma(Y)$, then from $A \in \mathcal{C}(n)$ with dim A = n and $\kappa(X, A) < \infty$ it follows that $\kappa(Y, A) < \infty$.

Proof. Monotonicity of γ is obvious. Fix $X \subseteq Y$ with $\gamma(X) = \gamma(Y)$, and suppose we are given A in $\mathcal{C}(n)$ with dim A = n and $\kappa(X, A) < \infty$. Let (B, V) be the splitting of A and let $\mathcal{I} \subseteq \mathbb{R}^n$ be finite with $X \subseteq \mathcal{I} + A = \mathcal{I} + B + V$. Since $\mathcal{I} + B$ is compact, in view of Remark 2.4 we obtain

(2.1)
$$\cos X \subseteq \cos(\mathcal{I} + B + V) = \cos(\mathcal{I} + B) + V.$$

Since $\operatorname{ccs} X \subseteq \operatorname{ccs} Y$ and $\gamma(X) = \gamma(Y)$ there is a subspace W of \mathbb{R}^n with dim $W = \gamma(X)$ and there are splittings (B_1, W) and (B_2, W) of $\operatorname{ccs} X$ and $\operatorname{ccs} Y$ respectively, with $B_1 \subseteq B_2$. Put $A_1 := A \cap W^{\perp}$. Now (2.1) implies $W \subseteq V$, and hence $A_1 + W = A$. Therefore dim A = n yields dim $A_1 = \dim W^{\perp} = n - \gamma(X)$, and relint A_1 (the interior of A_1 relative to the smallest subspace including A_1) is open in W^{\perp} . Since $B_2 \subseteq W^{\perp}$ is compact there is a finite set $\mathcal{J} \subseteq W^{\perp}$ with $B_2 \subseteq \mathcal{J} + A_1$. It follows that

$$Y \subseteq \cos Y = B_2 + W \subseteq \mathcal{J} + A_1 + W = \mathcal{J} + A$$

and thus $\kappa(Y, A) < \infty$.

Lemma 2.7. For all n in \mathbb{N} there is a constant $C_1(n) \ge 0$ such that for all A in $\mathcal{C}(n)$ with dim A = n the following hold:

- a) $\kappa(A, \frac{1}{2}A) \leq C_1(n)$
- b) there is a discrete subgroup G of the additive group of \mathbb{R}^n such that $\mathbb{R}^n = G + A$ and $\sup_{x \in \mathbb{R}^n} |(x + 3A) \cap G| \le C_1(n)$.

Proof. From [7, Lemma 2.4] we obtain for all m in \mathbb{N} a constant $C_2(m)$, monotone increasing in m, such that for every m-dimensional compact B in $\mathcal{C}(m)$ there is a parallelotope $P \subseteq \mathbb{R}^m$, centered at the origin, with

$$(2.2) P \subseteq B \subseteq C_2(m)P .$$

Now set

$$C_1(n) := [3C_2(n) + 1]^n$$

where [a] denotes the largest integer below or equal to a if $a \in \mathbb{R}$.

Fix *A* in C(n) and let (B, V) be the splitting of *A*. Since dim A = n we have dim $B + \dim V = n$. We may assume dim B = m and $V = \{0\} \times \mathbb{R}^{n-m}$ as a subspace of \mathbb{R}^n . We identify \mathbb{R}^m with $\mathbb{R}^m \times \{0\} \subseteq \mathbb{R}^n$ so that $B \subseteq \mathbb{R}^m$, and we choose a parallelotope $P \subseteq \mathbb{R}^m$ for *B* as in (2.2). Then from $2C_2(m) \leq 3C_2(n)$ and the definition of $C_1(n)$ we obtain

$$\kappa(A, \frac{1}{2}A) = \kappa(B, \frac{1}{2}B) \le \kappa(C_2(m)P, \frac{1}{2}P) \le \kappa(3C_2(n)P, P) \le C_1(n) .$$

For the second assertion we use for P from above the representation

$$P = [-r_1, r_1] \times [-r_2, r_2] \times \cdots \times [-r_m, r_m]$$

with some $r_1, r_2, \ldots, r_m > 0$ and put $G_0 := 2r_1\mathbb{Z} \times 2r_2\mathbb{Z} \times \cdots \times 2r_m\mathbb{Z} \subseteq \mathbb{R}^m$. Then G_0 is an additive subgroup of \mathbb{R}^m with $G_0 + B \supseteq G_0 + P = \mathbb{R}^m$. Now set $G := G_0 \times \{0\} \subseteq \mathbb{R}^n$. Then $G + A = G + B + V = \mathbb{R}^n$. On the other hand we have for every x in \mathbb{R}^n

$$(x+3A) \cap G = (x+3B) \cap G \subseteq (x+3C_2(m)P) \cap G \subseteq (x+3C_2(n)P) \cap G$$

and hence

$$|(x+3A) \cap G| \le |(x+3C_2(n)P) \cap G| \le C_1(n)$$

This completes the proof.

Lemma 2.8. Suppose that p is a seminorm on \mathbb{R}^n and that $Y \subseteq [0, \infty)$. Put $X := p^{-1}(Y)$. Then $\alpha(X) \leq C_3(n)\beta(Y)^n$ for some constant $C_3(n)$. If $\operatorname{codim}(\ker p) \geq 2$, then $\alpha(X) \geq \beta(Y)/2$.

Proof. For r > 0 put $A(r) := \{x \in \mathbb{R}^n \mid p(x) \le r\} \in C(n)$. Let (B(1), V) be the splitting of A(1) and put B(r) := rB(1) for r > 0. Then (B(r), V) is the splitting of A(r). Moreover, $V = \ker p$. Set $m := \operatorname{codim} V$, so dim B(1) = m.

Define $f, g: [0, \infty) \to \mathbb{N}$ by setting f(0) := g(0) := 1 and, for t > 0, $f(t) := \kappa(\partial A(t), A(1)) = \kappa(\partial B(t), B(1))$ and $g(t) := \kappa(A(t), A(1)) = \kappa(B(t), B(1))$. Then f and g are monotone increasing, $f \leq g$, and

$$\kappa(\partial A(r), A(s)) = f(r/s)$$

$$\kappa(A(r), A(s)) = g(r/s)$$

for r, s > 0. As in the beginning of the proof of Lemma 2.7 we obtain

(2.3)
$$g(t) = \kappa(B(t), B(1)) \le \kappa(tC_2(m)P, P) = [tC_2(m) + 1]^m.$$

Here $P \subseteq B(1)$ is a parallelotope chosen as for (2.2). If $m \ge 2$ then

(2.4)
$$f(t) = \kappa(\partial B(t), B(1)) \ge t .$$

This can be seen as follows: Consider B(1) as a subset of \mathbb{R}^m . Fix x_0 in $\partial B(1)$ such that $2||x_0||_2 = \text{diam } B(1)$. Let Q be the orthogonal projection in \mathbb{R}^m onto $\text{span}\{x_0\}$ and L := ker Q. Then $\dim L \ge 1$. It follows that for every x in $[-tx_0, tx_0]$ (the segment joining $-tx_0$ and tx_0) the set $(x + L) \cap \partial B(t)$ is not empty. Moreover, from $B(1) \in C(n)$ it follows that $x_0 + L$ is a supporting hyperplane for B(1). If $x_1, x_2, \ldots, x_k \in \mathbb{R}^m$ are such that

$$\partial B(t) \subseteq \bigcup_{l=1}^k (x_l + B(1)) ,$$

from the above it is clear that then

$$[-tx_0, tx_0] \subseteq \bigcup_{l=1}^k (Qx_l + B(1))$$

and therefore $k \ge [t + 1] \ge t$. This yields (2.4).

Let us consider the case $0 < \lambda(Y) \le \sup Y < \infty$. There is

$$\varepsilon \in [0, \lambda(Y)/2]$$

such that $[0, \lambda(Y) - \varepsilon] \subseteq Y$. It follows that

$$A(\lambda(Y) - \varepsilon) \subseteq X \subseteq A(\sup Y) .$$

Thus, using (2.3), we obtain

$$\alpha(X) \le \kappa(A(\sup Y), A(\lambda(Y) - \varepsilon)) = g\left(\frac{\sup Y}{\lambda(Y) - \varepsilon}\right) \le g(2\beta(Y)) \le C_3(n)\beta(Y)^n$$

for some constant $C_3(n) \ge 1$.

There is ε in $[0, \sup Y/2]$ such that $\sup Y - \varepsilon \in Y$ and therefore

(2.5)
$$\partial A(\sup Y - \varepsilon) \subseteq X$$
.

Every *A* in C(n) with $A \subseteq X$ is path connected, and satisfies $0 \in A$. Since *p* is continuous, p(A) is included in the path component of *Y* containing 0. Therefore $p(A) \subseteq [0, \lambda(Y)]$ and $A \subseteq A(\lambda(Y))$. This shows that

$$\kappa(X, A) \ge \kappa(X, A(\lambda(Y)))$$

for all A in C(n). Hence we find for $m \ge 2$, applying (2.4) and (2.5):

$$\alpha(X) \ge \kappa(\partial A(\sup Y - \varepsilon), A(\lambda(Y))) = f\left(\frac{\sup Y - \varepsilon}{\lambda(Y)}\right) \ge f(\beta(Y)/2) \ge \beta(Y)/2 .$$

The case $\lambda(Y) > 0$, sup $(Y) = \infty$ is handled similarly, and in all other cases the assertion is trivial.

3. Proof of the Theorems

Let us first prove Theorem 1.5. Suppose that we are given $h \in \mathcal{P}([0, \infty))$ and a seminorm p on \mathbb{R}^n . Set $W := h \circ p$. Then $[W]_t = p^{-1}([h]_t)$ for every t > 0. Now Lemma 2.8 yields $\alpha([W]_t) \leq C\beta([h]_t)^n$ with some positive constant C. Moreover, if codim(ker $p) \geq 2$ Lemma 2.8 implies that $\beta([h]_t) \leq 2\alpha([W]_t)$. From these facts the theorem follows.

The proof of Theorem 1.2, taken up next, is divided into the following steps:

- (i) $\mathcal{W}(n, C)$ is closed under increasing pointwise limits for every $C \ge 0$.
- (ii) W(n, C) is a convex cone for every $C \ge 0$.

Now suppose that $W \in \mathcal{P}(\mathbb{R}^n)$.

- (iii) If A in C(n) has dimension n, if $\kappa(\operatorname{supp} W, A) < \infty$, if there is a > 0 such that $W \ge a$ on 2A, and if W is bounded with $b := \sup W(\mathbb{R}^n)$, then $W \in \mathcal{W}(n, C)$ for $C := C_1(n)^3 \kappa(\operatorname{supp} W, A)b/a$, where $C_1(n)$ is the constant given in Lemma 2.7.
- (iv) If $\sup_{t>0} \alpha([W]_t) < \infty$ then $W \in \mathcal{W}(n, C)$ for some $C \ge 0$.
- (v) If $\limsup_{t\to 0} \alpha([W]_t) + \limsup_{t\to\infty} \alpha([W]_t) < \infty$ then $W \in \mathcal{W}(n, C)$ for some $C \ge 0$.

Theorem 1.2 is then a consequence of (ii) and (v).

Statements (i) and (ii) were proven in [4, Sect. 5.1]. For completeness we repeat the argument here. Suppose that $C \ge 0$. Fix two σ -finite positive Borel measures μ , ν on \mathbb{R}^n . If W is the pointwise limit of an increasing sequence of functions in $\mathcal{W}(n, C)$, then (1.1) follows from Lebesgue's Monotone Convergence Theorem. This proves (i) since μ , ν were chosen arbitrarily.

Consider the implication

(3.1)
$$\left(u \le C\sqrt{vw} \text{ and } x \le C\sqrt{yz}\right) \implies (u+x)^2 \le C^2(v+y)(w+z)$$

for u, v, w, x, y, z in $[0, \infty)$, which is a consequence of $2\sqrt{vwyz} \le vz + yw$. If $W_1, W_2 \in W(n, C)$ then (3.1) implies that $W_1 + W_2 \in W(n, C)$. Since W(n, C) is a cone, W(n, C) is convex.

To show (iii) choose a discrete additive subgroup *G* of \mathbb{R}^n for *A* as in Lemma 2.7b). Let \mathcal{I} be a finite subset of \mathbb{R}^n with supp $W \subseteq \mathcal{I} + A$ and $|\mathcal{I}| = \kappa$ (supp *W*, *A*). Put $\mathcal{J} := (\mathcal{I} + 3A) \cap G$. From the choice of *G* it follows that

$$(3.2) |\mathcal{J}| \le C_1(n)|\mathcal{I}|.$$

Define $\overline{W} \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $\overline{W}(x, y) := W(x - y)$. Then \overline{W} is a Borel function. We claim that

$$\operatorname{supp} \overline{W} \subseteq \bigcup_{\substack{u,v \in G \\ u-v \in \mathcal{J}}} (u+A) \times (v+A) \ .$$

To see this, suppose that $(x, y) \in \text{supp } \overline{W}$, or equivalently $x - y \in \text{supp } W$. There is w in \mathcal{I} such that $x - y \in w + A$, and there are u, v in G such that $x \in u + A$ and $y \in v + A$. It follows that $u - v \in x - y + 2A \subseteq w + 3A \subseteq \mathcal{I} + 3A$. Also $u - v \in G$ because G is a subgroup. This proves the claim.

Now Cauchy-Schwarz' inequality for sums yields

(3.3)
$$I(W; \mu, \nu) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \overline{W} d(\mu \times \nu) \le b \int_{\text{supp} \overline{W}} d(\mu \times \nu)$$
$$\le b \sum_{\substack{u, \nu \in G \\ u-\nu \in \mathcal{J}}} \mu(u+A)\nu(\nu+A) \le b \left(\sum_{\substack{u, \nu \in G \\ u-\nu \in \mathcal{J}}} \mu(u+A)^2 \sum_{\substack{u, \nu \in G \\ u-\nu \in \mathcal{J}}} \nu(\nu+A)^2\right)^{\frac{1}{2}}$$

We need to estimate the sums in the last term. For every x in \mathbb{R}^n , from $A \in \mathcal{C}(n)$ it follows that the statement $(u \in G \text{ and } x \in u + A)$ is equivalent to the statement $u \in (x + A) \cap G$. By the choice of G this leads to

$$|\{u \in G \mid x \in u + A\}| = |(x + A) \cap G| \le |(x + 3A) \cap G| \le C_1(n)$$

and thus for all x, y in \mathbb{R}^n

(3.4)
$$|\{u \in G \mid (x, y) \in (u + A) \times (u + A)\}| \le C_1(n)^2$$

Also we have

(3.5)
$$\bigcup_{u \in G} (u+A) \times (u+A) \subseteq \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n \mid x-y \in 2A \} =: D$$

and $\overline{W} \ge a$ on D. Using (3.2), (3.4) and (3.5) we calculate

$$\begin{split} \sum_{\substack{u,v \in G \\ u-v \in \mathcal{J}}} \mu(u+A)^2 &= |\mathcal{J}| \sum_{u \in G} \mu(u+A)^2 = |\mathcal{J}| \sum_{u \in G} \int_{(u+A) \times (u+A)} d(\mu \times \mu) \\ &\leq C_1(n)^2 |\mathcal{J}| \int_D d(\mu \times \mu) \leq \frac{C_1(n)^3 |\mathcal{I}|}{a} \int_{\mathbb{R}^n \times \mathbb{R}^n} \overline{W} \, d(\mu \times \mu) \\ &= \frac{C_1(n)^3 |\mathcal{I}|}{a} I(W;\mu,\mu) \,, \end{split}$$

a similar estimate holding for the sum over $v(v + A)^2$. This proves (iii) in view of (3.3).

To show (iv) suppose that $M := \sup_{t \ge 0} \alpha([W]_t) < \infty$. For *m* in \mathbb{N} and $1 \le i \le m2^m$ define $W_{m,i}$ and W_m in $\mathcal{P}(\mathbb{R}^n)$ by setting

$$W_{m,i} := \frac{1}{2^m} \chi_{[W]_{i/2^m}}$$
$$W_m := \sum_{i=1}^{m2^m} W_{m,i} .$$

Here χ_A denotes for $A \subseteq \mathbb{R}^n$ the characteristic function of A. The sequence (W_m) is increasing and converges pointwise to W. Fix m and i. There is A in C(n) such that dim A = n, $A \subseteq [W]_{i/2^m}$, and $\kappa([W]_{i/2^m}, A) \leq M$. Since A is closed supp $W_{m,i} = \operatorname{cl}[W]_{i/2^m}$ can be covered by the same number of translates of A as $[W]_{i/2^m}$, i.e. $\kappa(\operatorname{supp} W_{m,i}, A) = \kappa([W]_{i/2^m}, A)$. Using Lemma 2.7 we thus obtain

$$\kappa$$
(supp $W_{m,i}$, $\frac{1}{2}A$) $\leq C_1(n)\kappa$ (supp $W_{m,i}$, A) $\leq C_1(n)M$.

Moreover, $W_{m,i} = 1/2^m$ on A and $W_{m,i} \le 1/2^m$ on \mathbb{R}^n . By (iii) $W_{m,i} \in \mathcal{W}(n, C)$ for $C = C_1(n)^4 M$, independently of m and i. By (ii) $W_m \in \mathcal{W}(n, C)$ for every m, and thus (i) yields the desired result.

The remaining case (v) is handled as follows: We can assume that $W \neq 0$, otherwise there is nothing to do. By our assumptions there are M > 0 and $0 < t_1 < t_0$ such that $\alpha([W]_t) \leq M$ for t in $(0, t_1] \cup [t_0, \infty)$ and $[W]_t \neq \emptyset$ for t in $(0, t_1]$. Consider $\gamma([W]_t)$ as a function of t sending $(0, \infty)$ into $\{0, 1, 2, ..., n\}$ (γ is given in Definition 2.5). We can choose $0 < t_3 < t_2 \leq t_1$ with $\gamma([W]_{t_2}) = \gamma([W]_{t_3})$. For x in \mathbb{R}^n put $W_1(x) := \min\{t_3, W(x)\}$ and $W_2(x) := \min\{t_0 - t_3, W(x) - W_1(x)\}$. Also put $W_3 := W - W_1 - W_2$. Then $W_1 \leq t_3$, $W_2 \leq t_0 - t_3$, and $W_i \geq 0$ for i = 1, 2, 3. Moreover, we have

$$[W_1]_t = \begin{cases} [W]_t & 0 \le t \le t_3 \\ \varnothing & t_3 < t \end{cases}$$
$$[W_2]_t = \begin{cases} [W]_{t+t_3} & 0 \le t \le t_0 - t_3 \\ \varnothing & t_0 - t_3 < t \end{cases}$$
$$[W_3]_t = [W]_{t+t_0}.$$

From (iv) it follows that $W_1, W_3 \in \mathcal{W}(n, C)$ for some $C \ge 0$. Since $[W]_{t_2} \ne \emptyset$ and $\alpha([W]_{t_2}) < \infty$ there is A in $\mathcal{C}(n)$ with dim A = n, $A \subseteq [W]_{t_2}$ and $\kappa([W]_{t_2}, A) < \infty$. By Lemma 2.6 also $\kappa([W]_{t_3}, A) < \infty$, and by Lemma 2.7a) $\kappa([W]_{t_3}, \frac{1}{2}A) < \infty$. Hence the closedness of A and supp $W_2 \subseteq cl[W]_{t_3}$ imply that $\kappa(supp W_2, \frac{1}{2}A) < \infty$. Also we have $W_2 \ge t_2 - t_3$ on A and $W_2 \le t_0 - t_3$ on \mathbb{R}^n . Now (iii) implies that $W_2 \in \mathcal{W}(n, C)$ for some C, and by (ii) the same holds for $W = W_1 + W_2 + W_3$. This finishes the proof of (v).

References

- Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)
- [2] Buffoni, B., Jeanjean, L., and Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. **119**, 179–186 (1993)
- [3] Grünbaum, B.: Convex polytopes. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York 1967

- [4] Mattner, L.: Strict definiteness of integrals via complete monotonicity of derivatives. Trans. Amer. Math. Soc. **349**, 3321–3342 (1997)
- [5] Sasvári, Z.: Positive definite and definitizable functions, vol. 2 of Mathematical Topics. Berlin: Akademie Verlag 1994
- [6] Stewart, J.: Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math. **6**, 409–434 (1976)
- [7] Zong, C.: Strange phenomena in convex and discrete geometry. Universitext, New York: Springer-Verlag 1996

Nils Ackermann Mathematisches Institut Universität Giessen Arndtstr. 2 D-35392 Giessen email: nils.ackermann@math.uni-giessen.de web: http://www.math.uni-giessen.de/nils.ackermann