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Abstract

If W : Rn
→ [0, ∞] is Borel measurable, define forσ -finite positive Borel measures

µ, ν onRn the bilinear integral expression

I (W; µ, ν) :=
∫

Rn

∫
Rn

W(x − y) dµ(x) dν(y) .

We give conditions onW such that there is a constantC ≥ 0, independent ofµ andν,
with

I (W; µ, ν) ≤ C
√

I (W; µ, µ)I (W; ν, ν) .

Our results apply to a much larger class of functionsW than known before.

1. Introduction and Results

Given a Borel functionW : Rn
→ [0, ∞], for σ -finite positive measuresµ, ν on Rn define

the integral

I (W; µ, ν) :=
∫

Rn

∫
Rn

W(x − y) dµ(x) dν(y) .

Denote forC ≥ 0 byW(n, C) the class of Borel functionsW : Rn
→ [0, ∞] such that for all

σ -finite positive measuresµ, ν onRn

(1.1) I (W; µ, ν) ≤ C
√

I (W; µ, µ)I (W; ν, ν)

holds. Moreover, denote
W(n) :=

⋃
C≥0

W(n, C) .

1



If W is an even function and the symmetric bilinear formI (W; ·, ·) is positive semidefinite,
thenW ∈ W(n, 1) (Cauchy-Schwarz’ inequality). Hence we may regard (1.1) as a generalized
form of the Cauchy-Schwarz inequality.

An even functionW such thatI (W; ·, ·) is positive semidefinite is calledpositive definite.
Roughly speaking, positive definiteness of a function corresponds to non negativity of its
Fourier transform [5, 6]. The only result regarding (1.1) the author is aware of that goes
beyond positive definite functions is given by Mattner [4, Sect. 5.1]: If‖·‖ is any norm onRn,
h : [0, ∞) → [0, ∞] is decreasing, andW is given byW(x) := h(‖x‖), thenW ∈ W(n).
Theorem 1.5 below recovers this statement and extends it by allowingh to be non monotone.
Theorem 1.2, the main result of the present paper, yields a criterion for membership inW(n)

for functionsW that can not be written ash ◦ p with a seminormp onRn.
The study of property (1.1) is motivated by the partial differential equation

(1.2) −1u + V u = (W ∗ u2)u u ∈ H1(Rn) .

Here∗ denotes convolution,V in L∞(Rn) is periodic, and 0 lies in a gap of the spectrum of
(−1 + V), cf. [1]. One is interested in the existence of nontrivial solutions to (1.2). For the
special casen = 3 andW(x) = 1/‖x‖2 the problem was settled in [2] by using the fact that
this particular functionW is positive definite. In [1] it is shown thatW ∈ W(n) (together with
appropriate growth conditions) is sufficient to obtain a nontrivial solution of (1.2).

1.1. Main Results

The statement of our Theorems requires to introduce some notation and definitions. For a
topological spaceX denote byP(X) the set of Borel functionsf : X → [0, ∞]. For n
in N denote byC(n) the class of subsets ofRn that are closed, convex, and symmetric (i.e.
−A = A). The dimension dimA of a convex subsetA of Rn is the dimension of the affine
hull of A.

Definition 1.1. For X, A ⊆ Rn, X 6= ∅, put

κ(X, A) := inf{ m ∈ N | X can be covered bym translates ofA }

and

α(X) := inf{ m ∈ N | ∃A ∈ C(n) : dim A = n, A ⊆ X andκ(X, A) = m } .

For X = ∅ setκ(∅, A) := 0 andα(∅) := 0.

Given a setX, a mapW : X → R andt in R denote

[W]t := { x ∈ X | W(x) ≥ t } .

Furthermore, define the classA(n) by

A(n) :=

{
W ∈ P(Rn)

∣∣∣∣ lim sup
t→0

α([W]t) + lim sup
t→∞

α([W]t) < ∞

}
.

Our main result then reads:
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Theorem 1.2.For every n inN the inclusionconv(A(n)) ⊆ W(n) holds.

Remark 1.3. It will be shown in the proof of Theorem 1.2 thatW(n) is a convex cone.
Obviously,A(n) is a cone. The Example 1.6 given below demonstrates thatA(n) is not
convex.

The present author does not know whether a function inW(n) that is sufficiently regular,
say continuous, must necessarily belong to conv(A(n)).

A simpler criterion for membership inW(n) can be formulated in the case of the compo-
sition of a map with a seminorm. To state it we introduce further concepts and notation.

Definition 1.4. For a subsetY of [0, ∞) putλ(Y) := sup{ t > 0 | [0, t ] ⊆ Y } and

β(Y) :=


0 Y = ∅
∞ λ(Y) = −∞ andY 6= ∅
sup(Y)/λ(Y) otherwise.

Here we set∞/a := ∞ if a > 0 and∞/∞ := 1.

We introduce

B :=

{
h ∈ P([0, ∞))

∣∣∣∣ lim sup
t→0

β([h]t) + lim sup
t→∞

β([h]t) < ∞

}
.

Our second result then reads:

Theorem 1.5. Suppose that h∈ P([0, ∞)) and that p is a seminorm onRn. If h ∈ B then
h ◦ p ∈ A(n). If h ◦ p ∈ A(n) andcodim(ker p) ≥ 2 then h∈ B.

We provide some examples to illustrate the concepts introduced so far:

Example 1.6. Denote byh the characteristic function of [0, 1], taken as a map from [0, ∞)

into [0, ∞]. Thenh ∈ B. For i = 1, 2 defineWi as a map inP(R2) by Wi (x1, x2) := h(|xi |).
Theorem 1.5 implies thatWi ∈ A(2) for i = 1, 2, but clearlyW := W1 + W2 /∈ A(2). Since
A(2) is a cone this implies thatA(2) is not convex. Nevertheless,W ∈ W(2) by Theorem 1.2
and sinceW(2) is a convex cone.

Example 1.7.We construct a functionW inA(n) that is not even, and hence is neither positive
definite nor of the formh◦ p with h inP([0, ∞)) andp a seminorm onRn. Pickx0 in Rnr{0}

and set

W0(x) :=
1

‖x‖2

W(x) := W0(x) + W0(x − x0) .

Denoting byD(r, x) the closed ball of radiusr > 0 with centerx, it follows easily that

D(1/t, 0) ⊆ [W]t ⊆ D(2/t, 0) ∪ D(2/t, x0)

for all t > 0. This implies thatW ∈ A(n).
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Example 1.8.We show that the assumption on codim(ker p) used in Theorem 1.5 is not purely
technical. If p is a seminorm onRn with codim(ker p) = 0 then triviallyh ◦ p ∈ A(n) for
arbitraryh in P([0, ∞)). Given the seminormp(x) := |x| in R with codim(ker p) = 1, we
constructh in P([0, ∞)) such thatW := h ◦ p ∈ A(1) but h /∈ B. Put

h(s) :=


∞ s = 0

exp(−(k − 1)2) s = exp(k2) for somek in N
1/s otherwise.

For t > 1 we obtain [h]t = [0, 1/t ], and for 0< t ≤ 1 we obtain

(1.3) [h]t = [0, 1/t ] ∪

{
exp

((
1 +

[√
− log t

])2)}
.

Recall that [a] denotes the largest integer less than or equal toa if a ∈ R. From (1.3) it is clear
thatα([W]t) ≤ 3 for all t ≥ 0, soW ∈ A(1). On the other hand, fortk := exp(−k2) we find

β([h]tk) = exp((1 + k)2) exp(−k2) = exp(1 + 2k)

and therefore lim supt→0 β([h]t) = ∞. Henceh /∈ B.

1.2. General Notation

In Rn denote by‖·‖p for p in [1, ∞] the standardl p(n)-norm. In the case ofp = 2 we write
x · y for the standard Euclidean scalar product of elementsx, y in Rn. If V is a subspace of
Rn, denote byV⊥ the orthogonal subspace with respect to the standard scalar product.

The power set of a setX will be written 2X. The cardinality ofX is denoted by|X|. Some
operators used are: convA for the convex hull ofA, cl A, int A, and∂ A for closure, interior,
and boundary of a subsetA of a topological space.

A parallelotope is a rectangular parallelepiped.

2. Some Convex Geometry

The next Lemma allows us to deal with unbounded sets inC(n) in a convenient manner.

Lemma 2.1. If A ∈ C(n) then there is a unique subspace V ofRn such that B:= A ∩ V⊥
∈

C(n) is compact and A= B + V .

Proof. First we remark: If a setA in C(n) includes a ray (a set{x + ty | t ≥ 0} for some
x, y in Rn), then it includes the 1-dimensional subspace parallel to that ray. IfA includes a
translate of a subspaceV of Rn thenA includesV .

Now fix A in C(n). From [3, Lemma 2.5.4] we obtain a unique subspaceV of Rn of
maximal dimension such that a translate ofV and thusV is included inA. Moreover, by
that lemma it also holds thatB := A ∩ V⊥

∈ C(n) does not include a line (the translate of
a 1-dimensional subspace) andA = B + V . If B was not bounded then it included a ray
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by [3, Lemma 2.5.1]. SinceB is symmetric it therefore included a line also. Contradiction.
SinceA is closedB must therefore be compact.

If, on the other hand, for some subspaceV of Rn, B = A∩V⊥ is compact andA = B+V ,
thenV is included inA. If A includes a translate of another subspaceW, and thus includes
W, thenW ⊆ V . HenceV has maximal dimension among the subspaces included inA, and
it is unique, again by Lemma 2.5.4loc.cit. �

Definition 2.2. We call the pair(B, V) given for A in C(n) by Lemma 2.1 thesplitting of A.

Definition 2.3. Denote forX ⊆ Rn by

ccsX := cl(conv1
2(X − X)) ∈ C(n)

the closed convex hull of the symmetrization ofX.

Remark 2.4. For A, B ⊆ Rn we have conv(A + B) = convA + convB. Thus

ccsX = cl 1
2(convX − convX) .

From this also follows that ccs(X +Y) = ccsX +ccsY if one of X andY is relative compact.
Moreover, ccsA = A if A ∈ C(n).

Definition 2.5. If X ⊆ Rn and(A, V) is the splitting of ccsX, putγ (X) := dim V .

Lemma 2.6. The mapγ : 2Rn
→ {0, 1, 2, . . . , n} is monotone increasing with respect to the

partial order induced on2Rn
by inclusion. If X ⊆ Y ⊆ Rn and γ (X) = γ (Y), then from

A ∈ C(n) with dim A = n andκ(X, A) < ∞ it follows thatκ(Y, A) < ∞.

Proof. Monotonicity ofγ is obvious. FixX ⊆ Y with γ (X) = γ (Y), and suppose we are
given A in C(n) with dim A = n andκ(X, A) < ∞. Let (B, V) be the splitting ofA and
let I ⊆ Rn be finite with X ⊆ I + A = I + B + V . SinceI + B is compact, in view of
Remark 2.4 we obtain

(2.1) ccsX ⊆ ccs(I + B + V) = ccs(I + B) + V .

Since ccsX ⊆ ccsY andγ (X) = γ (Y) there is a subspaceW of Rn with dimW = γ (X)

and there are splittings(B1, W) and(B2, W) of ccsX and ccsY respectively, withB1 ⊆ B2.
Put A1 := A ∩ W⊥. Now (2.1) impliesW ⊆ V , and henceA1 + W = A. Therefore
dim A = n yields dimA1 = dimW⊥

= n − γ (X), and relintA1 (the interior ofA1 relative
to the smallest subspace includingA1) is open inW⊥. SinceB2 ⊆ W⊥ is compact there is a
finite setJ ⊆ W⊥ with B2 ⊆ J + A1. It follows that

Y ⊆ ccsY = B2 + W ⊆ J + A1 + W = J + A

and thusκ(Y, A) < ∞. �

Lemma 2.7. For all n in N there is a constant C1(n) ≥ 0 such that for all A inC(n) with
dim A = n the following hold:
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a) κ(A, 1
2 A) ≤ C1(n)

b) there is a discrete subgroup G of the additive group ofRn such thatRn
= G + A and

supx∈Rn|(x + 3A) ∩ G| ≤ C1(n).

Proof. From [7, Lemma 2.4] we obtain for allm in N a constantC2(m), monotone increasing
in m, such that for every m-dimensional compactB in C(m) there is a parallelotopeP ⊆ Rm,
centered at the origin, with

(2.2) P ⊆ B ⊆ C2(m)P .

Now set
C1(n) := [3C2(n) + 1]n

where [a] denotes the largest integer below or equal toa if a ∈ R.
Fix A in C(n) and let(B, V) be the splitting ofA. Since dimA = n we have dimB +

dim V = n. We may assume dimB = m andV = {0} × Rn−m as a subspace ofRn. We
identify Rm with Rm

× {0} ⊆ Rn so thatB ⊆ Rm, and we choose a parallelotopeP ⊆ Rm for
B as in (2.2). Then from 2C2(m) ≤ 3C2(n) and the definition ofC1(n) we obtain

κ(A, 1
2 A) = κ(B, 1

2 B) ≤ κ(C2(m)P, 1
2 P) ≤ κ(3C2(n)P, P) ≤ C1(n) .

For the second assertion we use forP from above the representation

P = [−r1, r1] × [−r2, r2] × · · · × [−rm, rm]

with somer1, r2, . . . , rm > 0 and putG0 := 2r1Z × 2r2Z × · · · × 2rmZ ⊆ Rm. ThenG0 is
an additive subgroup ofRm with G0 + B ⊇ G0 + P = Rm. Now setG := G0 × {0} ⊆ Rn.
ThenG + A = G + B + V = Rn. On the other hand we have for everyx in Rn

(x + 3A) ∩ G = (x + 3B) ∩ G ⊆ (x + 3C2(m)P) ∩ G ⊆ (x + 3C2(n)P) ∩ G

and hence
|(x + 3A) ∩ G| ≤ |(x + 3C2(n)P) ∩ G| ≤ C1(n) .

This completes the proof. �

Lemma 2.8. Suppose that p is a seminorm onRn and that Y⊆ [0, ∞). Put X := p−1(Y).
Thenα(X) ≤ C3(n)β(Y)n for some constant C3(n). If codim(ker p) ≥ 2, thenα(X) ≥

β(Y)/2.

Proof. For r > 0 put A(r ) := { x ∈ Rn
| p(x) ≤ r } ∈ C(n). Let (B(1), V) be the splitting

of A(1) and putB(r ) := r B(1) for r > 0. Then(B(r ), V) is the splitting ofA(r ). Moreover,
V = ker p. Setm := codimV , so dimB(1) = m.

Define f, g : [0, ∞) → N by setting f (0) := g(0) := 1 and, for t > 0, f (t) :=
κ(∂ A(t), A(1)) = κ(∂ B(t), B(1)) and g(t) := κ(A(t), A(1)) = κ(B(t), B(1)). Then f
andg are monotone increasing,f ≤ g, and

κ(∂ A(r ), A(s)) = f (r/s)

κ(A(r ), A(s)) = g(r/s)
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for r, s > 0. As in the beginning of the proof of Lemma 2.7 we obtain

(2.3) g(t) = κ(B(t), B(1)) ≤ κ(tC2(m)P, P) = [tC2(m) + 1]m .

HereP ⊆ B(1) is a parallelotope chosen as for (2.2). Ifm ≥ 2 then

(2.4) f (t) = κ(∂ B(t), B(1)) ≥ t .

This can be seen as follows: ConsiderB(1) as a subset ofRm. Fix x0 in ∂ B(1) such that
2‖x0‖2 = diamB(1). Let Q be the orthogonal projection inRm onto span{x0} andL := kerQ.
Then dimL ≥ 1. It follows that for everyx in [−t x0, t x0] (the segment joining−t x0 andt x0)
the set(x + L) ∩ ∂ B(t) is not empty. Moreover, fromB(1) ∈ C(n) it follows thatx0 + L is a
supporting hyperplane forB(1). If x1, x2, . . . , xk ∈ Rm are such that

∂ B(t) ⊆

k⋃
l=1

(xl + B(1)) ,

from the above it is clear that then

[−t x0, t x0] ⊆

k⋃
l=1

(Qxl + B(1))

and thereforek ≥ [t + 1] ≥ t . This yields (2.4).
Let us consider the case 0< λ(Y) ≤ supY < ∞. There is

ε ∈ [0, λ(Y)/2]

such that [0, λ(Y) − ε] ⊆ Y. It follows that

A(λ(Y) − ε) ⊆ X ⊆ A(supY) .

Thus, using (2.3), we obtain

α(X) ≤ κ(A(supY), A(λ(Y) − ε)) = g

(
supY

λ(Y) − ε

)
≤ g(2β(Y)) ≤ C3(n)β(Y)n

for some constantC3(n) ≥ 1.
There isε in [0, supY/2] such that supY − ε ∈ Y and therefore

(2.5) ∂ A(supY − ε) ⊆ X .

Every A in C(n) with A ⊆ X is path connected, and satisfies 0∈ A. Sincep is continuous,
p(A) is included in the path component ofY containing 0. Thereforep(A) ⊆ [0, λ(Y)] and
A ⊆ A(λ(Y)). This shows that

κ(X, A) ≥ κ(X, A(λ(Y)))

for all A in C(n). Hence we find form ≥ 2, applying (2.4) and (2.5):

α(X) ≥ κ(∂ A(supY − ε), A(λ(Y))) = f

(
supY − ε

λ(Y)

)
≥ f (β(Y)/2) ≥ β(Y)/2 .

The caseλ(Y) > 0, sup(Y) = ∞ is handled similarly, and in all other cases the assertion
is trivial. �
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3. Proof of the Theorems

Let us first prove Theorem 1.5. Suppose that we are givenh ∈ P([0, ∞)) and a seminorm
p on Rn. Set W := h ◦ p. Then [W]t = p−1([h]t) for every t > 0. Now Lemma 2.8
yieldsα([W]t) ≤ Cβ([h]t)

n with some positive constantC. Moreover, if codim(ker p) ≥ 2
Lemma 2.8 implies thatβ([h]t) ≤ 2α([W]t). From these facts the theorem follows.

The proof of Theorem 1.2, taken up next, is divided into the following steps:

(i) W(n, C) is closed under increasing pointwise limits for everyC ≥ 0.

(ii) W(n, C) is a convex cone for everyC ≥ 0.

Now suppose thatW ∈ P(Rn).

(iii) If A in C(n) has dimensionn, if κ(suppW, A) < ∞, if there is a > 0 such that
W ≥ a on 2A, and if W is bounded withb := supW(Rn), thenW ∈ W(n, C) for
C := C1(n)3κ(suppW, A)b/a, whereC1(n) is the constant given in Lemma 2.7.

(iv) If supt≥0 α([W]t) < ∞ thenW ∈ W(n, C) for someC ≥ 0.

(v) If lim supt→0 α([W]t)+lim supt→∞ α([W]t) < ∞ thenW ∈ W(n, C) for someC ≥ 0.

Theorem 1.2 is then a consequence of (ii) and (v).
Statements (i) and (ii) were proven in [4, Sect. 5.1]. For completeness we repeat the

argument here. Suppose thatC ≥ 0. Fix twoσ -finite positive Borel measuresµ, ν on Rn. If
W is the pointwise limit of an increasing sequence of functions inW(n, C), then (1.1) follows
from Lebesgue’s Monotone Convergence Theorem. This proves (i) sinceµ, ν were chosen
arbitrarily.

Consider the implication

(3.1)
(

u ≤ C
√

vw and x ≤ C
√

yz
)

⇒ (u + x)2
≤ C2(v + y)(w + z)

for u, v, w, x, y, z in [0, ∞), which is a consequence of 2
√

vwyz ≤ vz + yw. If W1, W2 ∈

W(n, C) then (3.1) implies thatW1 + W2 ∈ W(n, C). SinceW(n, C) is a cone,W(n, C) is
convex.

To show (iii) choose a discrete additive subgroupG of Rn for A as in Lemma 2.7b). LetI
be a finite subset ofRn with suppW ⊆ I+A and|I| = κ(suppW, A). PutJ := (I+3A)∩G.
From the choice ofG it follows that

(3.2) |J | ≤ C1(n)|I| .

DefineW : Rn
× Rn

→ R by W(x, y) := W(x − y). ThenW is a Borel function. We claim
that

suppW ⊆

⋃
u,v∈G
u−v∈J

(u + A) × (v + A) .
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To see this, suppose that(x, y) ∈ suppW, or equivalentlyx − y ∈ suppW. There isw in I
such thatx − y ∈ w + A, and there areu, v in G such thatx ∈ u + A and y ∈ v + A. It
follows thatu − v ∈ x − y + 2A ⊆ w + 3A ⊆ I + 3A. Also u − v ∈ G becauseG is a
subgroup. This proves the claim.

Now Cauchy-Schwarz’ inequality for sums yields

(3.3) I (W; µ, ν) =

∫
Rn×Rn

W d(µ × ν) ≤ b
∫

suppW
d(µ × ν)

≤ b
∑

u,v∈G
u−v∈J

µ(u + A)ν(v + A) ≤ b

( ∑
u,v∈G
u−v∈J

µ(u + A)2
∑

u,v∈G
u−v∈J

ν(v + A)2
) 1

2

.

We need to estimate the sums in the last term. For everyx in Rn, from A ∈ C(n) it follows
that the statement (u ∈ G andx ∈ u + A) is equivalent to the statementu ∈ (x + A) ∩ G. By
the choice ofG this leads to

|{ u ∈ G | x ∈ u + A }| = |(x + A) ∩ G| ≤ |(x + 3A) ∩ G| ≤ C1(n)

and thus for allx, y in Rn

(3.4) |{ u ∈ G | (x, y) ∈ (u + A) × (u + A) }| ≤ C1(n)2 .

Also we have

(3.5)
⋃
u∈G

(u + A) × (u + A) ⊆ { (x, y) ∈ Rn
× Rn

| x − y ∈ 2A } =: D

andW ≥ a on D. Using (3.2), (3.4) and (3.5) we calculate∑
u,v∈G
u−v∈J

µ(u + A)2
= |J |

∑
u∈G

µ(u + A)2
= |J |

∑
u∈G

∫
(u+A)×(u+A)

d(µ × µ)

≤ C1(n)2
|J |

∫
D

d(µ × µ) ≤
C1(n)3

|I|

a

∫
Rn×Rn

W d(µ × µ)

=
C1(n)3

|I|

a
I (W; µ, µ) ,

a similar estimate holding for the sum overν(v + A)2. This proves (iii) in view of (3.3).
To show (iv) suppose thatM := supt≥0 α([W]t) < ∞. For m in N and 1≤ i ≤ m2m

defineWm,i andWm in P(Rn) by setting

Wm,i :=
1

2m
χ

[W]i /2m

Wm :=
m2m∑
i =1

Wm,i .
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HereχA denotes forA ⊆ Rn the characteristic function ofA. The sequence(Wm) is increasing
and converges pointwise toW. Fix m and i . There isA in C(n) such that dimA = n, A ⊆

[W]i /2m, andκ([W]i /2m, A) ≤ M . SinceA is closed suppWm,i = cl [W]i /2m can be covered
by the same number of translates ofA as [W]i /2m, i.e. κ(suppWm,i , A) = κ([W]i /2m, A).
Using Lemma 2.7 we thus obtain

κ(suppWm,i , 1
2 A) ≤ C1(n)κ(suppWm,i , A) ≤ C1(n)M .

Moreover,Wm,i = 1/2m on A and Wm,i ≤ 1/2m on Rn. By (iii) Wm,i ∈ W(n, C) for
C = C1(n)4M , independently ofm and i . By (ii) Wm ∈ W(n, C) for everym, and thus (i)
yields the desired result.

The remaining case (v) is handled as follows: We can assume thatW 6= 0, otherwise
there is nothing to do. By our assumptions there areM > 0 and 0 < t1 < t0 such that
α([W]t) ≤ M for t in (0, t1] ∪ [t0, ∞) and [W]t 6= ∅ for t in (0, t1]. Considerγ ([W]t) as
a function oft sending(0, ∞) into { 0, 1, 2, . . . , n } (γ is given in Definition 2.5). We can
choose 0< t3 < t2 ≤ t1 with γ ([W]t2) = γ ([W]t3). Forx in Rn put W1(x) := min{t3, W(x)}

andW2(x) := min{t0 − t3, W(x) − W1(x)}. Also putW3 := W − W1 − W2. ThenW1 ≤ t3,
W2 ≤ t0 − t3, andWi ≥ 0 for i = 1, 2, 3. Moreover, we have

[W1]t =

{
[W]t 0 ≤ t ≤ t3
∅ t3 < t

[W2]t =

{
[W]t+t3 0 ≤ t ≤ t0 − t3
∅ t0 − t3 < t

[W3]t = [W]t+t0 .

From (iv) it follows that W1, W3 ∈ W(n, C) for someC ≥ 0. Since [W]t2 6= ∅ and
α([W]t2) < ∞ there is A in C(n) with dim A = n, A ⊆ [W]t2 and κ([W]t2, A) < ∞.
By Lemma 2.6 alsoκ([W]t3, A) < ∞, and by Lemma 2.7a)κ([W]t3,

1
2 A) < ∞. Hence the

closedness ofA and suppW2 ⊆ cl[W]t3 imply that κ(suppW2,
1
2 A) < ∞. Also we have

W2 ≥ t2 − t3 on A andW2 ≤ t0 − t3 on Rn. Now (iii) implies thatW2 ∈ W(n, C) for some
C, and by (ii) the same holds forW = W1 + W2 + W3. This finishes the proof of (v).
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