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Abstract

We consider the singularly perturbed semilinear parabolic problem ut−d2∆u+
u = f(u) with homogeneous Neumann boundary conditions on a smoothly
bounded domain Ω ⊆ RN . Here f is superlinear at 0 and ±∞ and has subcritical
growth. For small d > 0 we construct a compact connected invariant set Xd in the
boundary of the domain of attraction of the asymptotically stable equilibrium 0.
The main features of Xd are that it consists of positive functions that are pairwise
non-comparable, and that its topology is at least as rich as the topology of ∂Ω in
a certain sense. If the number of equilibria in Xd is finite this implies the existence
of connecting orbits within Xd that are not a consequence of a well known result
by Matano.

1. Introduction

For N ≥ 2, a bounded domain Ω ⊂ RN with smooth boundary, a small positive param-
eter d and a continuously differentiable map f : R → R we consider the dynamics of the
parabolic boundary value problem

(Pd)

{
ut − d2∆u+ u = f(u) in Ω,

∂νu = 0 on ∂Ω.

Here ∂νu denotes the derivative of u with respect to the outer normal of ∂Ω, ut denotes
the time derivative, and ∆u the x-Laplacian of u, as usual. We assume that f has
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superlinear but subcritical growth at 0 and ±∞. This problem is well posed for initial
data in E := H1(Ω) and induces a (local) continuous semiflow ϕd on E. We are only
interested in nonnegative solutions and set E+ := {u ∈ E | u ≥ 0 a.e.}. As a consequence
of the parabolic maximum principle E+ is positive invariant under ϕd.

The corresponding stationary problem

(Ed)

{
−d2∆u+ u = f(u) in Ω,

∂νu = 0 on ∂Ω

has been the object of study for many authors. Usually it is treated as a variational
problem. Denoting F (u) :=

∫ u

0
f(s) ds, the variational functional is defined on E by

Jd(u) :=
1

2

∫
Ω

(d2|∇u|2 + u2) dx−
∫

Ω

F (u) dx .

It is well known that Jd presents a strict Lyapunov function for ϕd. Since f(u) = o(u)
as u → 0, 0 is an asymptotically stable equilibrium of ϕd. The domain of attraction of
0,

Ad := {u ∈ E | ϕt
d(u) → 0 as t→∞},

is an open neighborhood of 0 and its boundary ∂Ad is a closed subset of E. Clearly Ad,
A+

d := Ad ∩ E+, ∂Ad and ∂A+
d := ∂Ad ∩ E+ are positive invariant. It was first shown

by Poláčik [20] that the boundary ∂A+
d is a Lipschitz submanifold of codimension 1.

Assuming condition (F5) below Lazzo and Schmidt [13] proved that a semiorbit starting

at u ∈ E+ rA+
d blows up in finite time. Hence ∂A+

d separates the blow up solutions in
E+ from those converging to 0. This blow up phenomenon has been widely studied in
recent years; see e.g. [7,8] and the references therein. The present paper is a contribution
to the dynamics on the separatrix ∂A+

d . General results about the flow in Ad which hold
for arbitrary d > 0 can be found in our recent papers [2, 3].

We denote by
Kd := {u ∈ E | J ′d(u) = 0, u > 0 }

the set of positive equilibria of ϕd. Under the hypotheses stated below Kd is not empty,
Kd ⊆ ∂A+

d , and Jd achieves a positive minimum ad on ∂A+
d , necessarily at an element

of Kd. Note that limd→0 add
−N > 0 is well defined (cf. [1,19]). Fixing some small ε0 > 0

which will be determined later, and letting d → 0 we focus on the dynamics in ∂A+
d

with energy below

(1.1) cd := ad + ε0d
N .

We write J c
d := {u ∈ E | Jd(u) ≤ c} for the sublevel sets as usual and call the equilibria

in Kd ∩ J cd
d low-energy equilibria.

In order to state our result, we set pS = (N + 2)/(N − 2) for N ≥ 3 and pS = ∞ for
N = 2, and we assume the following hypotheses:

(F1) f ∈ C1(R,R),
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(F2) f(0) = f ′(0) = 0,

(F3) there are p ∈ (1, pS) and a1 > 0 such that |f ′(u)| ≤ a1(|u|p−1 + 1) for all u ∈ R.

As a consequence of these conditions, (Pd) defines a continuous semiflow ϕd on E =

H1(Ω) as described above. We are interested in the flow in A+
d . Therefore, values of f

in (−∞, 0) can be prescribed at will, and we may assume f to be odd. We require three
additional hypotheses on f :

(F4) There are θ > 2 and a2 ≥ 0 such that f(u)u ≥ θF (u)− a2 for all u > 0.

(F5) Either f ′(u)u > f(u) for all u > 0, or there is µ > 1 such that f ′(u)u ≥ µf(u) for
all u > 0, and f(u) is positive if u > 0 is large enough.

(F6) For fixed d > 0 the following hold: Every semiorbit starting in A+
d exists for

all time. If A is a relatively compact subset of A+
d then

⋃
t≥0 ϕ

t
d(A) is relatively

compact.

Note that the first alternative in (F5) implies that f(u)/u is strictly increasing in u > 0,
hence f(u) > 0 for all u > 0. The second alternative in (F5) allows for f(u) to be negative
for a bounded range of u. Finally, as in [2] the compactness of ϕd and [21, Theorem 3.1]
imply that (F6) follows from (F1)–(F5) if we assume the existence of a3, a4 > 0 and
r ∈ (0, p] such that r is close to p and

(1.2) f(u) ≥ a3u
r − a4

for u > 0.
As a standard example, suppose that n ∈ N, 1 < p1 < p2 < · · · < pn < pS, and bk ∈ R

(k = 1, 2, . . . , n). If for some k0 ∈ { 1, 2, . . . , n } it holds that bk < 0 for k < k0 and
bk > 0 for k ≥ k0, then (F1)–(F6) apply to f given by

f(u) =
n∑

k=1

bku
pk for u ≥ 0.

In particular, (F3) is satisfied with p = pn, (F4) is satisfied with θ = pk0 + 1, the second
alternative of (F5) is satisfied with µ = pk0 , and (1.2) is satisfied with r = p = pn. As
noted above, together with (F1) and (F2) this implies (F6).

The topology of ∂Ω plays an important rôle for the number and location of low energy
equilibria. In order to describe this we denote the barycenter of u ∈ L2(Ω) r {0} with
respect to the L2-norm | . |2 by

β(u) :=
1

|u|22

∫
Ω

|u(x)|2x dx .

Given r > 0 then β(u) ∈ Ur(∂Ω) for any u ∈ Kd ∩ J cd
d if d is small enough, and #(Kd ∩

J cd
d ) ≥ cat ∂Ω. Here cat denotes the Lusternik-Schnirelmann category of a topological

space. Similar and more refined results can be found in [1] where the barycenter with
respect to the H1-norm was considered. Our main theorem shows that the dynamics of
the parabolic semiflow (Pd) is also strongly influenced by the topology of ∂Ω.
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Theorem 1.1. Assume (F1) - (F5) hold. Let C be a connected component of ∂Ω and fix
r > 0. Then there is d0 > 0 such that for d ∈ (0, d0) there exists a set Xd ⊂ ∂A+

d ∩ J
cd
d

with the following properties:

(i) Xd is compact, connected and invariant under ϕd. The restriction of ϕd to Xd is
a global flow and Xd consists entirely of positive functions in C(Ω).

(ii) β(u) ∈ Ur(C) := {x ∈ RN | dist(x,C) < r } for u ∈ Xd.

(iii) cat(Xd) ≥ cat(C), where cat(Xd) is defined via open coverings.

(iv) H∗(C) is a direct summand of H∗(Xd), where H∗ denotes Alexander-Spanier or
Čech cohomology with any coefficients.

(v) dimXd ≥ N − 1, where dim denotes covering dimension.

(vi) Xd contains at least k := cat(Xd) equilibria. If Xd contains only finitely many
equilibria then it contains k equilibria u1, . . . , uk and connecting orbits from uj+1

to uj, j = 1, . . . , k − 1.

Remarks 1.2. (a) The statements Theorem 1.1(iii), (iv) can be interpreted as saying
that Xd is topologically at least as complicated as C. Motivated by the relation be-
tween critical points of the mean curvature function H : ∂Ω → R and the barycenter
and maximum points of low energy equilibria (cf. [5, 11, 15, 19, 24]) we expect that
the parabolic flow in Xd is closely related to the flow on C ⊂ ∂Ω generated by ∇H.
In fact, generically we expect that Xd is a manifold diffeomorphic to C and that
the two flows are flow equivalent.

(b) Throughout this paper cat denotes the Lusternik-Schnirelmann category defined
via open coverings (see Section 3). This is not essential for manifolds or absolute
neighborhood retracts (ANRs) but it does make a difference here. In particular, Xd

may not be an ANR in general.

(c) Imposing homogeneous Dirichlet boundary conditions it is known that cat(Ω) is
a lower bound for the number of positive low energy equilibria. Replacing ∂Ω
with Ω we think that a result similar to Theorem 1.1 holds, with the exception of
Theorem 1.1(v).

(d) In our setting no two positive equilibria are comparable. Hence the existence of
connecting orbits does not follow from the results in Matano [17].

(e) We need to work with Alexander-Spanier or Čech cohomology because we need the
continuity property which is not satisfied by singular cohomology. We refer the
reader to the books [6] for Čech and [22] for Alexander-Spanier cohomology.

(f) Under certain nondegeneracy and smoothness conditions on f it is shown in
Henry [12, Theorem p. 105] that for fixed d, generically with respect to domain
variation, all equilibria of ϕd are hyperbolic. In this case the set Xd contains only
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finitely many equilibria. We thank the referee for drawing our attention to this
reference.

Example 1.3. Suppose Ω ⊂ RN has the shape of a solid torus with boundary ∂Ω
homeomorphic to (S1)N−1. Then ∂Ω is connected and cat(∂Ω) = N . Thus we find for
d small a compact invariant set Xd ⊂ ∂A+

d with cat(Xd) ≥ N and dimXd ≥ N − 1. It
consists only of low energy equilibria and connecting orbits between these. If it contains
only finitely many equilibria then it contains a chain of N equilibria and connecting
orbits as stated in Theorem 1.1.

2. A retraction up to homotopy

We state some basic properties of the solutions of (Pd). For every u0 ∈ E there is a
solution u(t) of (Pd) with initial data u0, defined for times t in a maximal interval [0, T )
with T ∈ (0,∞]. It can be viewed as an element of

C([0, T ), E) ∩ C((0, T ), H2(Ω)) ∩ C1((0, T ), L2(Ω)) .

We denote the associated continuous semiflow by ϕd and write ϕt
d(u0) = u(t). The

energy Jd satisfies
d

dt
Jd(u(t)) = −|u̇(t)|22

for t > 0. Therefore Jd decreases strictly along nonconstant flow lines, and there is a
one-to-one correspondence between equilibria of ϕd and critical points of Jd. Assump-
tion (F2) implies that 0 is a linearly, hence asymptotically stable equilibrium of ϕd.
Assumption (F6) implies that every semiorbit starting in Ad has an ω-limit set that is
nonempty, connected, and consists entirely of equilibria.

Recall that we denote by Kd the set of positive equilibria of ϕd. Using (F5) it is easy
to see that every equilibrium in E r {0} is linearly unstable. It follows from the results
in [13] (see also [9,20]) that Kd ⊆ ∂A+

d . These facts and the results of [16,18] imply that
Jd achieves a positive minimum ad on ∂A+

d at an element of Kd. In [13] it is also observed
that (Pd) exhibits a threshold phenomenon in the following sense: For u ∈ E+ r {0}
there is a threshold value

(2.1) α(u) := sup{ s ≥ 0 | su ∈ Ad }

with the properties

• 0 < α(u) <∞

• su ∈ Ad for s ∈ [0, α(u))

• α(u)u ∈ ∂Ad

• the solution of (Pd) with initial value su blows up in finite time if s > α(u).
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These results were proved for homogeneous Dirichlet boundary conditions, but the same
arguments apply in our setting.

The technique to derive asymptotic estimates for (Ed) as d → 0 has been developed
by many authors. Our main reference will be the paper [1]. In a standard way it can be
shown that the results of [1] are valid in our setting even though the assumptions on f
used there are slightly stronger than ours.

A key rôle will be played by positive solutions of the elliptic problem on the whole
space:

(E∞) −∆u+ u = f(u) , u ∈ H1(RN) .

With respect to the corresponding variational functional

I∞(u) :=

∫
RN

(|∇u|2 + u2) dx−
∫

RN

F (u) dx ,

a ground state solution is by definition a positive solution of (E∞) that minimizes I∞
among all positive solutions. It is well known that under our conditions such minimiz-
ers exist and that they are radially symmetric about some point in RN and decrease
exponentially at infinity, cf. [4, 10, 14]. We do not know whether or not a ground state
is unique up to translations. The energy level of a ground state solution will be denoted
by b∞ in the sequel.

Since the minimum ad of Jd on ∂Ad coincides with the minimum of Jd on Kd, [1,
Prop. 3.4] yields that

(2.2) ad = dN(b∞/2 + o(1)) as d→ 0.

Next we define a continuous map from ∂Ω into sublevel sets of the restriction of Jd to
∂Ad. Fix a ground state solution w of (E∞) that is radially symmetric about 0. Define
a map κd : ∂Ω → E by setting

κd(P )(x) = w

(
|x− P |

d

)
for P ∈ ∂Ω and x ∈ Ω. Clearly κd is continuous, and it follows from [1, Prop. 3.2] (there
κd was defined using cut-off functions; the proof clearly extends to our setting) that

(2.3) max
t≥0

Jd(tκd(P )) = dN(b∞/2 + o(1))

as d→ 0, uniformly in P ∈ ∂Ω.
Recall the definition of the threshold value α(u) for u > 0 given in (2.1). In view of

α(u)u ∈ ∂Ad we define

γd : ∂Ω → ∂A+
d , γd(P ) := α(κd(P ))κd(P ) .

It is clear that

(2.4) dist(P, β(γd(P ))) → 0 as d→ 0, uniformly in P .
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Lemma 2.1. The map γd is continuous. It holds that Jd(γd(P )) = dN(b∞/2 + o(1)) as
d→ 0, uniformly in P .

Proof. As usual, for u, v ∈ H1(Ω) we write u > v if u ≥ v and u 6= v, and we write
u � v if u, v ∈ C(Ω) and if u − v is an element of the interior of the positive cone in
C(Ω). Recall that ϕd is strongly order preserving: If u > v then ϕt

d(u) � ϕt
d(v) for all

t > 0 where the orbits exist. Also recall that ϕt is a continuous map from its domain of
definition into C(Ω) for t > 0.

For continuity it suffices to prove that α is continuous. Let us consider a sequence
(un) ⊆ E+r{0} with un → u 6= 0 as n→∞. We may assume that α(un) → α∗ ∈ (0,∞]
as n→∞ since Ad is a neighborhood of 0.

If α∗ > α(u) then there is ᾱ > α(u) such that α(un) ≥ ᾱ for large n. By the remarks
made above, ϕ1

d(ᾱu) � ϕ1
d(α(u)u) and hence by continuity ϕ1

d(α(un)un) ≥ ϕ1
d(ᾱun) �

ϕ1
d(α(u)u) for large n. As ϕ1

d(α(un)un) ∈ ∂Ad ∩E+ we get α(u)u ∈ Ad, a contradiction.
If α∗ < α(u) then α∗u ∈ Ad. As Ad is open also α(un)un ∈ Ad for n large enough, a
contradiction. Accordingly, α(u) = α∗ which proves continuity of α.

The asymptotic estimate follows from (2.2) and (2.3).

Proposition 2.2. For every r > 0 there exist ε0 > 0 such that

dist(β(u), ∂Ω) < r for u ∈ ∂Ad ∩ J cd
d

for small d; here cd = ad + ε0d
N as in (1.1).

Proof. The proof will make use of a technique commonly used when dealing with singu-
larly perturbed problems, namely blow-up analysis. For this purpose we introduce for
d > 0 the scaled domain

Ωd := {x ∈ RN | dx ∈ Ω }

and consider the scaled problem

(SPd)

{
vt −∆v + v = f(v) in Ωd,

∂νv = 0 on ∂Ωd.

Solutions u of (Pd) and v of (SPd) are in a one-to-one correspondence via scaling of
the x-variable: v(t, x) = u(t, dx). Consequently, the dynamic properties of (Pd) carry
over to (SPd) via scaling. We denote the parabolic semiflow which (SPd) induces on
Ed := H1(Ωd) by ψd. The domain of attraction of 0 with respect to ψd will be denoted
by Bd. The variational functional for the scaled stationary equation{

−∆v + v = f(v) in Ωd,

∂νv = 0 on ∂Ωd

is given by

Id(v) :=
1

2

∫
Ωd

(|∇v|2 + v2) dx−
∫

Ωd

F (v) dx ,
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and its minimum on ∂Bd by bd. Note that for u ∈ E, and v in Ed its scaled counterpart

Jd(u) = dNId(v)

and hence

(2.5) bd = b∞/2 + o(1)

as d→ 0 by (2.2).
Arguing by contradiction we assume that there are r > 0, a sequence dn → 0 and

elements un ∈ ∂Adn ∩ J
adn+ 1

n
dN

n

dn
such that

dist(β(un), ∂Ω) ≥ r .

Going forward in time a small amount for each n, replacing the value of r with r/2,
and using that the semiflow ϕdn and the map β are continuous on E, we may as
well assume that the solution of (SPdn) starting at un can be considered as a map
in C([0,∞), H2(Ω)) ∩ C1([0,∞), L2(Ω)) (note that we gain differentiability into L2(Ω)
up to the initial time 0 by this).

Denoting the L2-barycenter of v ∈ L2(Ωd) r {0} by

βd(v) :=
1

|v|22

∫
Ωd

|v(x)|2x dx

and rescaling we obtain elements

(2.6) vn ∈ ∂Bdn ∩ I
bdn+1/n
dn

with

(2.7) dist(βdn(vn), ∂Ωdn) ≥ r

dn

.

The strategy to obtain a contradiction is to produce elements vn ∈ Edn that are close to
vn in L2(Ωdn) such that dist(βdn(vn), ∂Ωdn) remains bounded as n→∞.

Let us fix n ∈ N for the moment. Consider the closure Mn of the trajectory starting
at vn, i.e.

Mn := {ψdn(t, vn) | t ≥ 0 } in Edn .

Since ∂Bdn is closed and positive invariant, Mn is a subset of ∂Bdn and hence Idn is
bounded below on Mn by bdn . Moreover, assumption (F6) implies that Mn is compact.
Since Edn is continuously embedded in L2(Ωdn) (which is a Hausdorff space) the topolo-
gies of Edn and L2(Ωdn) coincide on Mn. Therefore Idn is continuous on Mn with respect
to the L2(Ωdn) -topology. From now on we denote the L2-norm of v ∈ L2(Ωdn) by |v|2.

The variational principle of Ekeland, cf. [23, Thm. I.5.1], yields vn ∈Mn such that

|vn − vn|2 ≤
1√
n

(2.8)

Idn(vn) ≤ Idn(vn)(2.9)

Idn(vn) ≤ Idn(w) +
1√
n
|w − vn|2 for all w ∈Mn.(2.10)
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We claim that

(2.11) ‖DIdn(vn)‖L(Edn ,R) ≤
1√
n
.

If vn ∈ ω(vn) (the ω-limit set of vn) then vn is an equilibrium point of ψdn . Hence
vn is a critical point of Idn and (2.11) holds. If vn /∈ ω(vn) then there is tn ≥ 0 such
that vn = ψdn(tn, vn). Recall that we have set up things such that the map given by
t 7→ ψdn(t, vn) is in C1([0,∞), L2(Ωdn)). Denote by wn(t) the solution of (SPdn) with
initial datum vn, i.e. wn(t) := ψdn(t, vn). Note that

(2.12)
d

dt
Idn(wn(t)) = −|ẇn(t)|22 ,

where ẇn denotes the derivative of the C1-map wn : [0,∞) → L2(Ωdn). We obtain from
(2.10) for t ≥ 0 that

0 ≤ Idn(wn(0))− Idn(wn(t)) ≤ 1√
n
|wn(0)− wn(t)|2

and hence from (2.12) that

|ẇn(0)|2 = lim
t→0+

|Idn(wn(0))− Idn(wn(t))|
|wn(0)− wn(t)|2

≤ 1√
n
.

Now (2.11) follows since wn(0) ∈ H2(Ω), wn satisfies equation (SPdn) for t ≥ 0, and
hence

‖DIdn(wn(0))‖L(Edn ,R) ≤ |ẇn(0)|2
holds.

Combining (2.5), (2.6), (2.9), (2.11), [1, Lemma 2.10], and [1, Prop. 3.6] yields that
‖vn‖Edn

remains bounded as n → ∞, and that there is a ground state solution w of
(E∞) and a sequence (yn) ⊆ RN with yn ∈ ∂Ωdn such that

(2.13) ‖vn − w(· − yn)|Ωdn
‖Edn

→ 0

and such that vn is concentrated in yn in the following sense:

(2.14) ∀ε > 0 ∃R0 > 0 ∀R > R0 ∀n ∈ N :

∫
ΩdnrBR(yn)

(|∇vn|2 + |vn|2) dx ≤ ε.

As the boundaries of the scaled sets Ωd behave uniformly with respect to d ∈ (0, 1] there
exists C > 0 such that |w(· − yn)|2 ≥ C, and therefore by (2.13)

(2.15) |vn|2 ≥
C

2
for n large enough.

Consider ρ > 0 such that Ω ⊆ Bρ(0). Fix ε > 0 and define for each n a probability
measure µn on RN by setting

µn(A) :=
1

|vn|22

∫
A

|vn|2 dx
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for every Lebesgue measurable subset A of RN . From (2.14) and (2.15) it follows that
there is R > 0 with

µn(Ωdn rBR(yn)) ≤ ε

for all n ∈ N. Along the lines of the proof of [1, Prop. 3.5] it follows easily that

dist(βdn(vn), ∂Ωdn) ≤ 2
ερ

dn

+R .

On the other hand, (2.8) and the boundedness of ‖vn‖Edn
imply boundedness of |vn|2

and |vn|2. Therefore (2.15) yields C > 0 with

dist(βdn(vn), βdn(vn)) ≤ Cρ

dn

|vn − vn|2 ≤
Cρ

dn

1√
n
.

Choosing ε small and n large enough we reach a contradiction with (2.7).

Remark 2.3. In contrast to the results in [1] we cannot prove Proposition 2.2 when
defining the barycenter β(u) via the H1-norm.

Fix δ > 0 such that

(2.16) Γ := {x ∈ RN | dist(x, ∂Ω) < δ }

is a normal tubular neighborhood of ∂Ω. Denote by π : Γ → ∂Ω the corresponding
normal projection. Now we obtain the main result of this section.

Corollary 2.4. For every r ∈ (0, δ] there are ε0 > 0 and d0 > 0 such that for all
d ∈ (0, d0] the maps

(2.17) ∂Ω
γd−→ ∂A+

d ∩ J
cd
d

β−→ Ur(∂Ω)
π−→ ∂Ω

are well defined and such that π ◦ β ◦ γd is homotopic to the identity on ∂Ω. In other
words, ∂Ω is a homotopy retract of ∂A+

d ∩ J
cd
d .

Proof. Choose ε0 as in Proposition 2.2. Together with Lemma 2.1 this implies that
β(∂A+

d ∩ J
cd
d ) ⊆ Ur(∂Ω) and that γd(∂Ω) ⊆ ∂A+

d ∩ J
cd
d for small d. Using (2.4) fix d0

small enough such that for d ∈ (0, d0] in addition to these properties it also holds that
β(γd(P )) ∈ B2δ/3(P ) ⊆ Γ for all P ∈ ∂Ω. Hence the segment with the endpoints P and
β(γd(P )) is included in Γ for all P ∈ ∂Ω. The linear homotopy h from the inclusion
∂Ω → RN to the map β ◦ γd has its image in Γ, and π ◦ h defines a homotopy from id∂Ω

to π ◦ β ◦ γd.

This result has strong consequences for the topology of and the dynamics in ∂A+
d ∩J

cd
d

as we will see below.
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3. Proof of Theorem 1.1

Recall that we are given a connected component C of ∂Ω and r > 0. We may assume
that r ≤ δ, where δ is given in the definition of Γ in (2.16). We choose ε0 > 0 and d0 > 0
as in Corollary 2.4 and fix d ∈ (0, d0]. The maps γd, β and π induce restrictions

C
γd−→ Wd := (π ◦ β)−1(C)

β−→ Ur(C)
π−→ C

such that

(3.1) π ◦ β ◦ γd is homotopic to idC .

Observe that Wd is a closed subset of ∂A+
d ∩ J

cd
d and that it is positive invariant under

ϕd because C is a connected component of ∂Ω.
Let Xd := ω(γd(C)) be the ω-limit set of γd(C) in Wd:

Xd = {u ∈ E | ϕtn
d (γd(xn))

n→∞−→ u for some xn ∈ C, tn →∞}.

Being the ω-limit set of the connected set γd(C), Xd is connected and ϕd is a global flow
on Xd. By (F6) Xd is compact. Standard regularity theory and the strong comparison
principle imply that Xd consists of functions that are continuous and positive in Ω.
It is also clear that β(u) ∈ Ur(C) for u ∈ Xd. Hence we have proved (i) and (ii) of
Theorem 1.1.

For the proof of (iii) and (vi) we need the Lusternik-Schnirelmann category catZ(A)
where Z is a topological space and A ⊂ Z. This is the smallest integer k ≥ 0 such that
there exist open sets U1, . . . , Uk ⊂ Z with A ⊂ U1 ∪ . . . ∪ Uk and which are contractible
in Z, that is there exists a continuous map hi : Ui × [0, 1] → Z with hi(z, 0) = z and
hi(z, 1) = zi ∈ Z for all z ∈ Ui, i = 1, . . . , k. If such a covering does not exist then
catZ(A) := ∞. Note that catZ(A) = 0 if and only if A = ∅. We also write cat(Z) :=
catZ(Z), as usual. It is important here that we work with open coverings and not with
closed ones as it is often the case. The two definitions are equivalent if Z is an ANR.
However, we shall apply the results to Z = Xd and we do not know whether Xd is an
ANR. The following properties are standard and easy to prove.

(c1) A ⊂ B ⊂ Z ⇒ catZ(A) ≤ catZ(B).

(c2) For any A ⊂ Z there exists a neighborhood V of A in Z with catZ(V ) = catZ(A).

(c3) A,B ⊂ C ⇒ catZ(A ∪B) ≤ catZ(A) + catZ(B).

(c4) Given V ⊂ Z open, h : V × [0, 1] → Z continuous with h0(z) = z we have
catZ(A) ≤ catZ(h1(A)) for every A ⊂ V ; here ht = h(·, t).

In fact, (c1) and (c3) are trivial. (c2) is also trivial because we work with open coverings:
If A ⊂ U1∪. . .∪Uk is a covering as in the definition of catZ(A) then set V := U1∪. . .∪Uk.
Finally, in order to see (c4) let h1(A) ⊂ U1 ∪ . . . ∪ Uk be a covering as in the definition
of catZ(h1(A)). Then A ⊂ h−1

1 (U1) ∪ . . . ∪ h−1
1 (Uk) is an open covering of A, and each

h−1
1 (Ui) can first be deformed into Ui using h, then into a point since Ui is contractible

in Z.
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Proof of Theorem 1.1(iii). By (c2) there exists a neighborhood V of Xd in Wd with
catWd

(Xd) = catWd
(V ). Since γd(C) is compact there exists T > 0 with ϕT (γd(C)) ⊂ V ,

hence catWd
(V ) ≥ catWd

(γd(C)) by (c4). It remains to prove catWd
(γd(C)) ≥ cat(C). In

order to see this, let h : C×[0, 1] → C be a homotopy between h0 = idC and h1 = π◦β◦γd.
Let γd(C) ⊂ U1 ∪ . . . ∪ Uk be a covering as in the definition of catWd

(γd(C)). Setting
Vj := γ−1

d (Uj) defines an open covering C = V1 ∪ . . . ∪ Vk of C. It remains to show
that each Vj is contractible in C. There exists a homotopy h(j) : Uj × [0, 1] → Wd which
deforms Uj to a point. Then

Vj × [0, 1] → C, (x, t) 7→

{
h(x, 2t) 0 ≤ t ≤ 1/2

πβ(h(j)(γd(x), 2t− 1)) 1/2 ≤ t ≤ 1

deforms Vj to a point.

Proof of Theorem 1.1(iv). This is a consequence of the continuity property [22, Theo-
rem 6.6.2] of Alexander-Spanier cohomology which we recall here for the reader’s con-
venience. Given topological spaces A ⊂ Z and ξ ∈ H∗(Z) we set ξ|A := i∗(ξ) where
i : A ↪→ Z denotes the inclusion and i∗ : H∗(Z) → H∗(A) the induced homomorphism in
cohomology. Now the continuity property says that for a paracompact Hausdorff space
Z and a closed subset A, given ξ ∈ H∗(A) there exists a neighborhood V of A in Z
and η ∈ H∗(V ) with η|A = ξ. If V1, V2 are two such neighborhoods and η1 ∈ H∗(V1),
η2 ∈ H∗(V2) satisfy η1|A = η2|A = ξ then there exists a neighborhood V3 ⊂ V1 ∩ V2 of A
so that η1|V3 = η2|V3 .

For the proof of Theorem 1.1(iv) we construct a homomorphism σ : H∗(Xd) → H∗(C)
such that σ ◦ (π ◦ β)∗ = id on H∗(C). Then H∗(Xd) ∼= H∗(C) ⊕ kern(σ). Given
ξ ∈ H∗(Xd) there exists a neighborhood V of Xd in Wd and η ∈ H∗(V ) with η|Xd

= ξ.
There also exists T > 0 such that ϕt

d(γd(C)) ⊂ V for all t ≥ T . Then we set σ(ξ) :=
(ϕt

d ◦ γd)
∗(η), any t ≥ T . This is independent of t ≥ T because the maps ϕt1

d ◦ γd,
ϕt2

d ◦ γd : C → V are homotopic. The definition is also independent of V and η. If V1, V2

are neighborhoods of Xd in Wd, and η1 ∈ H∗(V1), η2 ∈ H∗(V2) satisfy η1|Xd
= ξ = η2|Xd

then there exists a neighborhood V3 ⊂ V1 ∩ V2 of Xd with η1|V3 = η2|V3 . For t large we
have ϕt

d(γd(C)) ⊂ V3. Therefore

(ϕt
d ◦ γd)

∗(η1) = (ϕt
d ◦ γd)

∗(η1|V3) = (ϕt
d ◦ γd)

∗(η2|V3) = (ϕt
d ◦ γd)

∗(η2).

Here we interpret ϕt
d ◦ γd as a map ϕt

d ◦ γd : C → Vj for j = 1, 2, 3.
We have seen that σ : H∗(Xd) → H∗(C) is well defined. In order to see that σ ◦ (π ◦

β)∗ = id consider ζ ∈ H∗(C) and set ξ := (π ◦ β|Xd
)∗(ζ). Let V be a neighborhood of

Xd in Wd, η ∈ H∗(V ) with η|Xd
= ξ, so that σ(ξ) = (ϕt

d ◦ γd)
∗(η) for t large. Then

(π ◦ β|V )∗(ζ)|Xd
= ξ = η|Xd

, hence by the continuity property of H∗ there exists a
neighborhood V1 ⊂ V of Xd with (π ◦ β|V )∗(ζ)|V1 = η|V1 . For t large we have (ϕt

d ◦
γd)(C) ⊂ V1, so that

σ(ξ) = (ϕt
d ◦ γd)

∗(η|V1) = (ϕt
d ◦ γd)

∗((π ◦ β|V )∗(ζ)|V1) = (π ◦ β ◦ ϕt
d ◦ γd)

∗(ζ) = ζ.

The last equality follows from the fact that π ◦ β ◦ ϕt
d ◦ γd : C → C is homotopic to

π ◦ β ◦ γd which is homotopic to idC by (3.1).
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Proof of Theorem 1.1(v). Since C is a compact (N − 1)-dimensional manifold without
boundary we have HN−1(C) 6= 0. Now Theorem 1.1(iv) implies HN−1(Xd) 6= 0 which is
only possible if dimXd ≥ N − 1.

Proof of Theorem 1.1(vi). This is a consequence of Theorem 1.1(iii) and Theorem 4.1
below.

4. Existence of connecting orbits

We state a rather general result concerning the existence of connecting orbits for
gradient-like flows. Let X be a compact metric space with metric d. Let ϕ be a
gradient-like flow on X with strict Lyapunov function f : X → R, i. e. f is continu-
ous and f(ϕt(x)) < f(x) for x ∈ X, t > 0, except when x is a stationary solution. The
set of stationary solutions is denoted by S, and we assume that it is finite. Hence also
the set f(S) of “critical values” is finite. As a consequence, the α- and ω-limit sets of
x ∈ X consist of a single equilibrium which we denote by α(x), ω(x) ∈ S.

Theorem 4.1. If X is connected then there exist k := cat(X) = catX(X) equilibria
x1, . . . , xk and connecting orbits from xj+1 to xj, j = 1, . . . , k − 1.

The proof requires some preparations. For r > 0 and x ∈ X denote by Br(x) the
closed ball with radius r and center x. We fix r > 0 such that Br(x0) ∩ S = {x0} and
f(Br(x0)) ∩ f(S) = {f(x0)} for all x0 ∈ S. Moreover, for x0 ∈ S let

W u(x0) := {x ∈ X | ϕt(x) → x0 as t→ −∞}

denote the unstable set of x0 and define

SrW
u(x0) := {x ∈ W u(x0) | d(x, x0) = r},

BrW
u(x0) := {x ∈ W u(x0) | d(x, x0) ≤ r}.

Lemma 4.2. Suppose that x0 ∈ S. If (yn) ⊆ ∂Br(x0) and if there exist sn > 0 such that
ϕ−sn(yn) → x0 as n→∞ then yn → y ∈ SrW

u(x0) along a subsequence.

Proof. For large n there exist tn ∈ [0, sn) with ϕ−tn(yn) ∈ ∂Br(x0) and ϕ−t−tn(yn) ∈
Br(x0) for all t ∈ [0, sn − tn]. We may assume that ϕ−tn(yn) → z ∈ ∂Br(x0) as n→∞
since X is compact. Next, sn − tn → ∞ because otherwise sn − tn → t along a subse-
quence, hence ϕ−sn(yn) = ϕ−sn+tn(ϕ−tn(yn)) → ϕ−t(z) 6= x0, a contradiction. For t ≥ 0
it holds that ϕ−t(z) = limn→∞ ϕ

−t−tn(yn) ∈ Br(x0). Since x0 is the only equilibrium in
Br(x0) it follows that limt→∞ ϕ

−t(z) = x0 and z ∈ SrW
u(x0). Hence by our choice of

r there exists T > 0 with f(ϕT (z)) < min f(Br(x0)), and therefore f(ϕT (ϕ−tn(yn)) <
min f(Br(x0)) for n large. Since f(ϕtn(ϕ−tn(yn))) = f(yn) ≥ min f(Br(x0)) it follows
that tn ≤ T for n large. Thus we may assume tn → t as n→∞. This implies

yn = ϕtn(ϕ−tn(yn)) → y := ϕt(z) ∈ W u(x0).
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For convenience we introduce some notation: For x, y ∈ S we write x � y if there
exists a connecting orbit from x to y. A sequence x = x0 � x1 � . . . � xj = y of
equilibria is called a heteroclinic chain from x to y of length j.

Lemma 4.3. For x, y ∈ S with x 6= y and y ∈ W u(x) there exists a heteroclinic chain
from x to y.

Proof. There exist sequences yn ∈ SrW
u(x), tn > 0, such that ϕtn(yn) → y. By

Lemma 4.2 we may assume that yn → z1 ∈ SrW
u(x) and set x1 := ω(z1). Clearly

f(x1) < f(x) and hence x1 6= x.
If x1 = y we are done. If x1 6= y there exist sequences sn < rn with ϕsn(yn) → x1 and

ϕrn(yn) ∈ ∂Br(x1). As a consequence of Lemma 4.2 ϕrn(yn) → z2 ∈ SrW
u(x1) along

a subsequence and we set x2 := ω(z2). Now f(x2) < f(x1) and hence x2 /∈ { x1, x }.
We have heteroclinic orbits x � x1 � x2. As above, either x2 = y and we are done,
or x2 6= y and we continue as before. After a finite number of steps we arrive at a
heteroclinic chain from x to y.

Lemma 4.4. If X is connected then X is path-connected.

Proof. For each x ∈ X there exists a path to ω(x) ∈ S. Consequently, X can have
at most finitely many path-components. It follows from Lemma 4.3 that W u(x) is
path connected for every x ∈ S. This implies that a path component Y of X can be
written as Y =

⋃
x∈Y ∩S W

u(x), hence it is closed. Since X has only finitely many path-
components, each is closed and open. But then X being connected can have only one
path-component.

Proof of Theorem 4.1. We define the height h(x) ∈ N0 of an equilibrium x ∈ S by

h(x) := max{j ∈ N0 | there exists a heteroclinic chain of length j starting at x}.

The height of a stable equilibrium is 0. Theorem 4.1 can be formulated as saying that
there exists a heteroclinic chain of length k − 1 in X, provided there are only finitely
many equilibria. For j ∈ N0 we consider the set

Xj := {x ∈ X | h(α(x)) ≤ j}.

We have to prove that Xk−1 rXk−2 6= ∅. By Lemma 4.3 we know:

x ∈ S, h(x) ≤ j ⇒ W u(x) ⊂ Xj.

We claim that catX(Xj) ≤ j+1. For j = 0, X0 consists precisely of the stable equilibria.
So X0 is finite, hence catX(X0) = 1 because X is path-connected by Lemma 4.4. More-
over, Xj+1 = Xj∪(Xj+1rXj) and therefore catX(Xj+1) ≤ catX(Xj)+catX(Xj+1rXj).
For x ∈ Xj+1 r Xj we have h(α(x)) = j + 1. Clearly there cannot exist a connecting
orbit between equilibria having the same height. Using the flow ϕt for t → −∞, the
set Xj+1 r Xj can be deformed to the set Sj+1 = {x ∈ S | h(x) = j + 1} which is
finite. Using the properties of the category catX we obtain catX(Xj+1 rXj) ≤ 1, hence
catX(Xj+1) ≤ catX(Xj) + 1.

Since cat(X) = k we deduce Xk−2 6= X, hence Xk−1 rXk−2 6= ∅.
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nils@ackermath.info

Thomas Bartsch
Mathematisches Institut
University of Giessen
Arndtstr. 2, 35392 Giessen, Germany
Thomas.Bartsch@math.uni-giessen.de

Petr Kaplický
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